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The present essay traces the career of a particular mathematical problem—to find the side of a

square from the sum of its four sides and the area—from its first appearance in an Old Babylonian

text until it surfaces for the last time in the same unmistakeable form during the Renaissance in

Luca Pacioli’s and Pedro Nunez’ works. The problem turns out to belong to a non-scholarly

tradition carried by practical geometers, together with other simple quasi-algebraic “recreational”

problems dealing with the sides, diagonals and areas of squares and rectangles. This “mensuration

algebra” (as I shall call it) was absorbed into and interacted with a sequence of literate

mathematical cultures: the Old Babylonian scribal tradition, early Greek so-called metric geometry,

and Islamic al-jabr. The article explores how these interactions inform us about the early history of

algebraic thinking.

As far as possible I have referred for detailed documentation to earlier publications, in

particular to my analysis of Babylonian “algebra” and its reflections in later traditions. In cases

where documentation is not discussed in depth elsewhere I have still tried to be concise, but none

the less felt obliged to present at least an outline of the full argument.

I. An Old Babylonian “square problem”

A famous cuneiform mathematical text (BM 13901)1 contains as its No 23 the following

problem

In a surface, the f[o]u[r fronts and the surf]ace I have accumulated, 41´40´´.

4, the f[ou]r fronts, yo[u inscr]ibe. The i g i of 4 is 15´.

15´ to 41´40´´ [you r]aise: 10´25´´ you inscribe.

1, the projection, you append: 1°10´25´´ makes 1°5´ equilateral.

1, the projection, which you have appended, you tear out: 5´ to two

you repeat: 10´ n i n d a n confronts itself.

The text was written in the Old Babylonian period, that is, between 2000 BC and 1600 BC,

and probably during the eighteenth century BC. Originally, it appears to have contained 24

problems of apparently algebraic character dealing with one or more squares and their sides. In its

present state, the tablet is damaged, though most problems can be safely reconstructed.

The translation is meant to render the terminology as precisely as possible, and follows

principles which I have developed for the translation of Babylonian “algebra”.2 In the present

context, only a few words’ explanation can be made. Numbers, first of all, are rendered in the

degree-minute-second notation, which means that 1°10´25´´ is to be read . (One1
10

60

25

60 60

should remember that the original text contains no indicators of absolute order of magnitude,
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merely the sequence 1 10 25.) “Accumulating” (Akkadian kamārum3) is a genuine addition of

numbers, where both addends loose their identity and merge into a sum; as here, it may be used for

additions with no concrete interpretation (length plus area). “Appending” (wasābum), on the other

hand, is a concrete additive operation, where one entity (one may think as example of one’s own

bank account) is augmented by another (the interests of the year—actually labelled “the appended”

in Akkadian) without changing its identity (it remains my account). Appending possesses an inverse

operation “tearing out” (nasāhum); the other (“comparative”) subtractive operation “a exceeds b by

x” (a eli b x iter) is only used for concretely meaningful comparisons, and is thus no real inverse of

“accumulating”.

The “ i g i ” of a number n is its reciprocal as listed in a table of reciprocals. When having to

divide by n, the Babylonians would multiply by i g i n , using an operation labelled “raising”

(našûm)—probably best to be explained as “calculation [of something] by means of multiplication”;

other multiplicative operations are “a steps of b” ( b a - r à a ) , designating the multiplication of

number by number in a multiplication table; “repeating to n” (ina n ēsēpum), which is indeed an n-

fold concrete repetition; and “making a and b hold each other” (the most plausible reading of a ù b

šutakūlum), which means arranging the lines [with lenghts] a and b as sides of a rectangle [whose

area will then be a b]. A variant of the latter operation is “making a confront itself” (a

šutamhurum), which means making a the side of a square. The reverse of the latter operation is to

find out what “makes [the area] B equilateral” (B í b - s i 8 ), that is, what length a will be the side if

B is formed as a square (arithmetically: a = √B). The “projection” (wası̄tum) 1, finally, is a line

segment of length 1 which, projecting orthogonally from another line segment [with the length] a,

transforms it into a rectangle [with the area] 1 a = a. Lengths are measured in the unit n i n d a n (1

n i n d a n = 6 m) and areas in s a r (= n i n d a n 2)

With this is mind, we can understand the text. The first line tells that we are dealing with a

surface (details in the grammar seem indeed to suggest a field). The sum of the measuring numbers

for the four sides (not just four times the side) and the area is 41´40´´. In modern notation, if s is

the length of the side, this corresponds to the equation s2 + 4s = 41´40´´, which is the reason that

this and similar Babylonian problems are generally regarded as algebra. The second line prepares a

division by 4, which takes place in line 3; in our equation, this division would express itself in a

transformation into (s/2)
2 + 1 s = 41´40´´/4 = 10´25´´. The addition of 1 in line 4 would tell us that

(s/2)
2 + 2 1 (s/2) + 1 = 1°10´25´´; finding the equilateral corresponds to the transformation s/2 + 1 =

√1°10´25´´ = 1°5´, leading us to the further conclusion that s/2 = 5´—and finally s = 10´.

The numerical steps of the solution are thus meaningful when seen in the perspective of

symbolic algebra, yet the use of the term “projection” (and the addition of a mere “1” instead of
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“12” in line 4, which is an otherwise compulsory Babylonian

Figure 1. The procedure of

BM 13901, No 23.

practice) tells us that the Babylonian calculator operated in a very

different representation—see Figure 1: Each of the four sides was

thought of as provided with a projection (that is, a “projecting

width”) 14 and thus represented by a rectangle s×1; the surface

was a square s×s; and the sum was hence represented by a cross-

shaped configuration. When the Babylonian scribe divided by 4

in lines 2–3, what he did was to single out one fourth of this

configuration, for example, the gnomon in the upper left corner.

The addition of “1 the projection” calls for a general commentary: We think of a square as being

(for instance) 4 square feet and having the side 2 feet (knowing that, strictly speaking, the square is

a complex configuration which can equally well be characterized by any of these parameters). The

Babylonians, on their part, thought of the square as being 2 feet and having an area 4 square feet.5

Appending “1 the projection” thus means fitting in the square contained by the gnomon, each of

whose sides is indeed the projection. Thereby the gnomon is completed as a square with known

area 1+10´25´´ = 1°10´25´´, which is “made equilateral” by √1°10´25´´ = 1°5´. From this, the

projection (this time, according to our distinction, viewed as the side of the completing square) is

torn out, leaving 5´ as the width of the gnomon leg. “Repeating” this to two, that is, uniting it with

its mirror image, produces the side of the original square, that which “confronts itself”.

This “cut-and-paste procedure” is “naive” in the sense that everything can be “seen”

immediately to be correct (whenever the word is used in the following it is to be read in this

technical sense and never as “gullible”). There is no attempt to prove, for example, that the gnomon

is a rectangular gnomon and contains precisely a square; such “critical” reflection (in a quasi-

Kantian sense) had to wait until Euclid. But the procedure can be seen to be correct (and can be

transformed into a “critical” proof without difficulty), and is thus justification and algorithm in one

(as is the stepwise transformation of a modern algebraic equation). It is also “analytical” in the

sense that the unknown side is treated as if it were known until it can be isolated from the complex

relation in which it is entangled. If algebra is understood primarily as the application of analysis (as

François Viète would have it), the method is clearly algebraic in nature. But if algebra is a science

of number (or, post-Noether, generalized number) by means of abstract symbols, the Old

Babylonian “algebra of measurable line segments” is not algebra. This proviso should be kept mind

in the following when I drop the quotes for reasons of stylistic simplicity, speaking simply of

Babylonian algebra.

Many features of the present problem are shared by the Old Babylonian “algebra” texts in
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general: The distinction between two additive operations—that is, operations which when translated

into modern equations become additions; the analogous distinction between two different

subtractive and no less than four different multiplicative operations; and the use of naive cut-and-

paste geometry in procedures which are their own immediate justification. Other features, however,

single out the problem of “the four sides and the area” as a remarkable exception.

If by Q we designate the quadratic area and by s the corresponding side (Qi and si, i = 1, 2, ...

when several squares are involved); by 4s “the four” sides of a square); if (a) stands for the area

of the square on the line segment a and (a,b) for that of the rectangle “held” by a and b, the

tablet contains the following problems (n` stands for n 601):

1. Q+s = 45´

2. Q–s = 14`30

3. Q–1/3Q+1/3s = 20´

4. Q–1/3Q+s = 4`46°40´

5. Q+s+1/3s = 55´

6. Q+2/3s = 35´

7. 11Q+7s = 6°15´

8. Q1+Q2 = 21´40´´, s1+s2 = 50´ (reconstructed)

9. Q1+Q2 = 21´40´´, s2 = s1+10´

10. Q1+Q2 = 21°15´, s2 = s1–
1/7s1

11. Q1+Q2 = 28°15´, s2 = s1+
1/7s1

12. Q1+Q2 = 21´40´´, (s1,s2) = 10´

13. Q1+Q2 = 28´20´´, s2 = 1/4s1

14. Q1+Q2 = 25´25´´, s2 = 2/3s1+5´

15. Q1+Q2+Q3+Q4 = 27´5´´, (s2,s3,s4) = (2/3,
1/2,

1/3)s1

16. Q–1/3s = 5´

17. Q1+Q2+Q3 = 10`12°45´, s2 = 1/7s1, s3 = 1/7s2

18. Q1+Q2+Q3 = 23´20´´, s2 = s1+10´, s3 = s2+10´

19. Q1+Q2+ (s1–s2) = 23´20´´, s1+s2 = 50´

20. [missing]

21. [missing]

22. [missing]

23. 4s+Q = 41´40´´

24. Q1+Q2+Q3 = 29´10´´, s2 = 2/3s1+5´, s3 = 1/2s2+2´30´´

We observe that No 23 is the only problem referring to “the four” sides of a square. It is also

the only problem mentioning the sides before the area. It is certainly not the only normalized mixed

second-degree problem dealing with a single square, but all the others refer to a general method (in

semi-modern terms: halving the number of sides, squaring this half, etc.). In geometric terms, a

sides are expressed as (a,s); this rectangle is bisected, and the total area Q + 2 (½a,s) is

transformed into a gnomon which is then completed; etc.—see Figure 2. The procedure of No 23,

on the other hand, depends critically on the number 4; already at this point we may observe that

this use of an amazing and elegant but non-generalizable solution makes the problem look more

like a riddle than like a normal piece of mathematics (Babylonian or modern); so does, in fact, the

presence of precisely those four sides which really belong to the square, instead of an arbitrary (and
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thus virtually general) multiple.

Figure 2. The “normal” procedure

of BM 13901 for the solution of

Q+αs = C.

Other differences are no less striking. All remaining

problems tell that they deal with squares by using the term

which at one time designates the quadratic configuration and

the length of the side; No 23 is alone in stating at first that it

deals with “a surface” or (probably) “a field”. It is also alone

in using the term translated here as “front” (pūtum), an

Akkadian term corresponding to Sumerian s a g , the “width”

of a rectangle. In normal algebraic problems the Sumerian

term is compulsory; the use of a word belonging to the

spoken vocabulary of surveyors indicates that we are

supposed to think of a real piece of land.

Even the solution is uncommon. Other problems of the

tablet dealing with a single square have the side equal to 30´

(or 30), except for one case of 20´. These are indeed the

standard values of square sides in Old Babylonian algebra

problems, which may have to do with the roundness of these numbers in the sexagesimal place

value notation used in mathematics teaching (30´ = 1/2, 20´ = 1/3).
6 All other cases where 10´ is

found are caused by the use of other favourites (ratios 4 and 7, differences 10´ and 5´). Only No 23

(at least among those problems which are conserved) is constructed from the side 10´ as a

deliberate choice. And only No 23 tells the unit of the result, as if it were to be entered into a

cadastral or similar document (cf. note 6).

The final puzzling feature does not concern the problem itself but its place: Apart from No 16

(which can be suspected of having been displaced), problems of the type αQ ± βs = C occur in the

beginning of the tablet, and the neighbours of No 23 are considerably more complex. It seems as if

the difference in method as reflected in the contrast between Figure 1 and Figure 2 was understood

as a difference between mathematical genres.
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II. The Proofs of al-jabr

No other Babylonian mathematical tablet contains a problem involving “the four” sides of a

square or making use of the peculiar method of Figure 1. In order to find parallels we have to

make a jump to the early ninth century CE.

This was the moment when the Khalif al-Ma mūn asked al-

Figure 3. Al-Khwārizmı̄’s

second proof. From B. B.

Hughes, “Gerard of Cremona’s

Translation of al-Khwārizmı̄’s

Al-Jabr,” p. 238.

Khwārizmı̄ to put together a treatise covering those parts of the

field al-jabr wa’l-muqābalah that were either “brilliant” (latı̄f) or

practically useful.7 Al-Khwārizmı̄ is thus not to be considered the

inventor of al-jabr (Latinized as algebra), and as we can read in

a treatise by the slightly later Thābit ibn Qurrah8, it was

practiced by a group of “al-jabr people,” evidently some kind of

professional calculators. Yet within another generation or two,

Abū Kāmil would regard it as al-Khwārizmı̄’s discipline—and al-

Khwārizmı̄ appears indeed (together with his contemporary ibn

Turk, from whose work only a fragment is extant) to have

reshaped the discipline, in particular the treatment of second-degree problems, which was its core.9

The problem which we translate as x2 + 10x = 39 would be formulated as follows by the al-

jabr people: A treasure together with 10 roots equals 39 dirhems. Fundamentally, the problem thus

tells that an unknown amount of money (the “treasure” or māl—more precisely “property”) together

with 10 times its [square] root (ja_dr) equals 39 dirhems (strictly speaking, the correct translation is

hence y + 10√y = 39). They would find the root by an unexplained rule: You halve [the number of]

roots (which gives 5), multiply it by itself (25), add this to the dirhems (64), take the root (8), and

subtract the half of the [number of] roots. Thus the root is 3, and the treasure is 9.

This rule is given by al-Khwārizmı̄ and repeated by Thābit ibn Qurrah. It can safely be

assumed to belong to the inherited lore of the group. Al-Khwārizmı̄’s most important innovation

was to give a geometrical proof that the traditional rule (and the corresponding rules for the cases

Treasure and number equal roots and Roots and number equal treasure) was correct. As in the

Greek texts translated by al-Khwārizmı̄’s colleagues at the Baghdad court, points and areas are

labelled by letters in these proofs. In essence, however, they only differ from the cut-and-paste

proofs which we have encountered above by being more precisely argued and hence less naive.

For the case The treasure together with 10 roots equals 39 dirhems, two different proofs are

given. The second corresponds directly to the rule, and is made on a diagram similar to Figure 2
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(see Figure 3, which renders Gherardo of Cremona’s translation).

Figure 4. Al-Khwārizmı̄’s first

proof. From B. B. Hughes,

“Gerard of Cremona’s

Translation of al-Khwārizmı̄’s Al-

Jabr,” p. 237.

The first corresponds to a procedure that differs from the one

whose correctness is to be proved: 10 is divided by 4 (21/2),

squared (61/4), multiplied by 4 (25), and added to 39. The

diagram (see Figure 4) corresponds to that of Figure 1. There is

no reason within al-Khwārizmı̄’s text to bring a diagram so

obviously at odds with what is to be proved (elsewhere, he

confesses no particular infatuation with symmetry). If the diagram

is there it must be because it comes first to his mind, or because

he expects it to come first to the reader’s mind. It must hence be

supposed to have been familiar either to al-Khwārizmı̄ or to his

“model reader”—not from the al-jabr but from some other tradition. (It is indeed also more naive

in style than the following proofs.)

III. Abū Bakr’s “mensuration algebra”

This conjecture is confirmed by another treatise, a Liber mensurationum written by one

unidentified Abū Bakr. According to terminological criteria the work will be grossly contemporary

with al-Khwārizmı̄’s.10 No manuscript of the Arabic text is known, but a careful Latin translation

was made by Gherardo of Cremona.11 Moreover, as we shall see, Leonardo Fibonacci has used the

work in his Pratica geometrie.

Formally, the work deals with practical geometry, and some of it really does. Thus, in the

beginning of the first chapter it is told how, given the side of a square, the area and the diagonal

can be calculated. Then, however, Abu Bakr goes on with “brilliant” problems of no or scarce

practical interest and mostly asking for some kind of algebraic treatment; all in all, the initial

chapter (on squares) contains the following problems:

1. s = 10: Q?

2. s = 10: d?

3. s+Q = 110: s?

4. 4s+Q = 140: su?

5. Q–s = 90: s?

6. Q–4s = 60: su?

7. 4s = 2/5 Q: su?

8. 4s = Q: su?

9. 4s–Q = 3: su? (Both solutions are given)

10. d = √200; s?

11. d = √200; Q?
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12. 4s+Q = 60: su?

13. Q–3s = 18: s?

14. 4s = 3/8 Q: su?
12

15. Q/d = 7½: su?

16. d–s = 4: s?

17. d–s = 5 (no question, refers to the previous case).

18. d = su+4: s? (no reference is made to No 16).

19. Q/d = 71/14: s?, d?

Here, Q again denotes the area and s the side of the square; d is the diagonal, 4s stands for “[the

sum of] its four sides” (or merely “its sides,” meaning the same), and su for “each of its sides”

(below, A shall be used about the area of a rectangle, and l1 and l2 about its sides). The next

chapters (rectangles regarded as “quadrates longer on one side,” and rhombi) are similarly weighted

toward algebraic problems; only then come chapters dominated by genuine geometrical calculation

(and clearly related to the Alexandrian/Heronian tradition). In order to possess a name for this

particular kind of quasi-algebra I shall speak about “mensuration algebra”—dropping again the

quotes in the following for stylistic reasons, even though the objections to this characterization of

the technique as algebra tout court are even stronger than in the case of the scribe school discipline

(cf. note 22).

Returning to the chapter on the square we observe, firstly, that “the four sides and the area”

turns up as No 4, and again with a different numerical parameter as No 12—the sides being once

more mentioned first (in the Liber mensurationum this is the common usage). Secondly, that all

problems involving sides except No 13 deal with the side or the four sides; later on, the sides of

rectangles also invariable turn up in geometrically meaningful company—the shorter or the longer

side alone, these two together, or all four together (similarly also the diagonals of rhombi). Thirdly,

that the standard square has a side equal to 10, the only real exceptions being Nos 8–9 and

12–13.13

Abū Bakr solves many of the quasi-algebraic problems in what he regards as two different

ways. One of these receives no special label and can thus be identified as a standard method, the

method habitually belonging with the tradition of mensuration algebra as he knew it. The other is

al-jabr (aliabra in Gherardo’s translation). A literal translation of Nos 3, 4 and 6 will serve as

illustration:

3. And if he [a “somebody” presented in No 1] has said to you: I have aggregated the side and

the area, and what resulted was 110. How much is then each side?

The working in this will be that you take the half of the side as the half and multiply it

by itself, and one fourth results; this then add to 110, and it will be 1101/4, whose root you

then take, which is 101/2, from which you subtract the half, and 10 remain which is the side.

Understand!

There is also another way for this according to al-jabr, which is that you posit the side as

a thing and multiply it by itself, and what results will be the treasure which will be the area.

This you thus add to the side according to what you have posited, and what results will be a
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treasure and a thing which equal 110. Do thus what you were told above in al-jabr, which is

that you halve the thing and multiply it by itself, and what results you add to 110, and you

take the root of the sum, and subtract from it the half of the root. Actually, what remains will

be the side.

4. And if he has said: I have aggregated its four sides and its area, and what resulted was 140,

then how much is each side?

The working in this will be that you halve the sides which will be two, thus multiply this

by itself and 4 results, which you add to 1<40 and what results will be 1>44, whose root you

take which is 12, from which you subtract the half of 4, what thus remains is the side which is

10.

. . . . . . . . . . . . .

6. And if he has said: I subtracted its sides from its area and 60 have remained, how much thus

is each side?

In this the working will be that you halve the sides which will be two. This you thus

multiply by itself and add it to 60, and take the root of the sum which is 8, to this you thus

add half the number of sides, and what results will be 10 which is the side.

But its working according al-jabr is that you posit the side as a thing, which you

multiply by itself, and a treasure results which is the area. From this then subtract its four

sides, which are 4 things; thus remains a treasure minus 4 things which equals 60, restore thus

and oppose, that is that you restore the treasure by the 4 things that were subtracted, and join

them to 60, and you will thus have a treasure which equals 4 things and 4 dragmas. Do thus

what you were told above in the sixth question [of al-jabr], that is that you halve the roots

and multiply them by themselves and join them to the number and take its root, and what

results will be that which is 8. To this you then join the half and 10 results, which will be the

side.

This piece of text calls for a number of commentaries. First we observe that the numerical

steps of the basic and the al-jabr methods coincide (which is actually noticed by Abū Bakr, as can

be seen by his identification “that which is 8” in No 6). The difference between the two methods

must thus depend on something else (even though, in certain other problems, the two also differ

numerically).

Al-jabr is evidently the technique explained by al-Khwārizmı̄, and Abū Bakr’s treatise on

mensuration must have been produced as a companion piece to an explanation of al-jabr—though

not to al-Khwārizmı̄’s treatise but to something in more archaic style. This appears from certain

terminological peculiarities: more precisely from the use of the terms “restoration” (Arabic al-jabr)

and “opposition” (Arabic al-muqābalah), precisely the ones that had given the technique its name.

Al-Khwārizmı̄ uses “restoration” exclusively about the elimination of a subtractive term, in the

way it is employed in Abū Bakr’s No 6; the elimination of a coefficient by division is termed

differently, without distinction between coefficients larger than and smaller than 1.14 In Abū

Bakr’s al-jabr expositions, “a treasure minus 4 things” is “restored” as “one treasure” by the

addition of 4 things, and “one fourth of a treasure” is “restored” through the multiplication by 4 (in

No 55). In Abū Bakr’s usage (which is confirmed in the standard treatment of No 4, and again in

the genuine geometrical part of the treatise, in Nos 67, 100, and 102), restoration thus repairs any

deficiency, whether subtractive or partitive (on one occasion it even repairs an excess by
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subtracting it, viz in No 55).

“Opposition” as used by al-Khwārizmı̄ is the converse of his restoration, the subtraction of an

addend on both sides of an equation. In the Liber mensurationum, the meaning once again is less

specific and mostly different. Where al-Khwārizmı̄ has the recurrent phrase “restore, and add” (the

restoration being the elimination of a subtractive term –t on one side of the equation, and the

addition the concomitant addition of an additive term t on the other), Abū Bakr has “restore, and

oppose” (Nos 5, 6, 9, etc.);15 in one place (No 22), the term covers an al-Khwārizmı̄an opposition;

and repeatedly, when an entity A is “opposed with” or “by” another entity B, the meaning is that

the equation A = B is formed (most clearly in Nos 41, 48, 49 and 50, but also in Nos 7, 24, 25, 31

and elsewhere). Summed up in one concept, “opposition” means “putting on the opposite side,”

either in an already existing equation or by establishing an equation.16

Abū Bakr is not alone in not complying with the usage which was canonized thanks to the

fame of al-Khwārizmı̄’s treatise. Even al-Karajı̄, though he defines the terms as does al-Khwārizmı̄,

uses “opposition” in Abū Bakr’s way.17 There can be little doubt that Abū Bakr’s loose parlance

is original and al-Khwārizmı̄’s stricter usage an innovation, in all probability an intentional and

premeditated innovation: the natural trend for the terminology of a mathematical culture undergoing

a process of dynamic maturation (as that of ninth to tenth-century Islam) is to increase its precision

and stringency, not to abandon its accuracy. Abū Bakr’s al-jabr is thus pre-al-Khwārizmı̄an, if not

necessarily by date then at least in substance and style (but given the triumph of al-Khwārizmı̄’s

Algebra it cannot then be too much later).

So much concerning the al-jabr method. Returning to the standard method we remember that

it did not (or did not always) differ from al-jabr in its numerical steps. None the less it was

regarded as something different by Abū Bakr. Why?

A first observation to make is the care with which the al-jabr sections explain that the treasure

represents the area of the square, and the root (or “the thing,” which is used in the same sense until

standard equations are derived)18 its side. The implication is that treasure and root/thing are not in

themselves understood geometrically but as numbers. The basic method may then differ from al-

jabr precisely by referring directly to the geometric method.

This conjecture is confirmed by several further observations. One concerns the word

“understand” (intellige in the Latin text), whose occurrences are scattered throughout the work, in

somewhat varying contexts. On two occasions, the word stands as an exhortation to penetrate a

deliberately opaque and superfluously intricate computation and to grasp why it works after all (Nos

50 and 74). In a number of questions concerned with genuine geometrical computation it asks the

disciple to look at or understand from actually appearing diagrams why the computation is correct
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(a square with diagonal in No 2; an isosceles trapezium in No 78; etc.); this recalls another

Gherardian translation from an Arabic text, according to which the Indians “possess no

demonstration [for a particular construction] but only the device intellige ergo”—where indeed

Indian geometrical texts have the phrase nyāsa, “one draws” (etc.) followed by a diagram when

they want to illustrate a rule, algorithm or algebraic identity which has just been stated.19 Finally,

the word is used repeatedly as in No 3, that is, after the presentation the standard solution (but not

the al-jabr solution) of a quasi-algebraic problem. Even though no diagrams are given on these

occasions i Gherardo’s version, the parallel to the real geometric problems suggest that here too the

exhortation may have referred originally to understanding through a diagram—in No 3 to a diagram

similar to Figure 2.

Significantly, some of the solutions which carry the “understand” are termed in a way which

shows that the original constitutive geometrical entities are thought of all the way through. One

instance is No 43, dealing with a rectangle (a “quadrate longer on one side”) and indeed a

rectangular version of “the four sides and the area”:

If indeed he has said to you: I have aggregated its four sides and the area, and what resulted

was 76; and one side exceeds the other by two. How much thus is each side?

The way to find this will be that you multiply the increase of one side over the other,

always [that is, whatever the actual excess] by 2, and what results will be 4. Therefore subtract

this from 76, and 72 will remain. Next aggregate the number of sides of the quadrate, which is

4, and join it to the increase of one side over the other, and what results will be 6. Thus take

its half, which is 3, and multiply this by itself, and 9 results, which you join to the 72, and 81

results. Then take its root, which is 9, and subtract from it the half of 6, which is 3, and the

shorter side will remain, which is 6. To this then add 2, and the longer side will be 8.

Understand.

The way according to al-jabr, however, ....

The numerical steps can be explained in several ways; algebraically, we may call the width z, and

the length thus z + 2; proceeding mechanically from here we get Abū Bakr’s al-jabr procedure. Or

we may call the two sides x and y (x = y + 2), and observe that the area plus the sides is then

x y + 2x + 2y = x y + 4y + 2 2 = (x+4) y + 4; if X = x + 4, we therefore have X y = 76 – 4 =

72, X = y + (2+4) = y + 6. The problem has thus been reduced to finding the sides of a rectangle

whose area is 76 – 4 = 72 (4 being 2 the excess times invariably 2), and whose length exceeds the

width by 2 + 4 (4 being the number of sides). This interpretation makes sense not only of the

numbers but also of most of the words of the text—including the use of the identity-conserving

“joining” of 4 to the excess, since the result is still an excess (as the Old Babylonian texts, Abū

Bakr distinguishes between additions, even if less sharply).

Still, some formulations remain unexplained, and x’s and y’s are anyhow anachronistic. The

second interpretation therefore has to be reinterpreted itself in order to become relevant. This is

done in Figure 5: Initially, the sides are thought of as provided with the standard width 1 (the
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“projection” of our Old Babylonian texts).20 The excesses are cut

Figure 5. Liber

mensurationum, the

procedure of No 43.

off, after which the sides are “aggregated,” and collectively

“joined” to the excess. The rest goes as in Figure 2: The excess of

the rectangle over the square is bisected and a gnomon is formed,

to which the quadratic complement is “joined,” etc.

That the text refers to something more than mere numbers is

confirmed by the recurrent phrase “what results/remains will

be ...”. The al-jabr sections (where we have the advantage of

knowing what goes on) demonstrate that the phrase is no mere

stylistic whim. Here the phrase also turns up time and again—but

never in places where “what results” is nothing but the outcome of

a computation. Instead of “what remains will be 72,” such

passages simply tell that “72 results”. Invariably, “what results” is

either a composite algebraic expression or equation, or a something

which is identified with something different—as in the end of No

3, where the numerical outcome of the algorithm is told to be the

side, and again toward the end of No 6.

Even within the descriptions of the standard method, we therefore have to read the phrase

“what results will be a” as “the thing which results will have the numerical value a”. But since it is

never explained, as done in the al-jabr sections, that something different represents the geometrical

entities that the problems deal with, then the “things” whose existence is presupposed must be

geometrical entities, derived by means of geometrical operations from the entities referred to in the

statement. In No 43, “the thing that is 4” will hence be the piece which is removed from the two

rectangles representing the lengths—that is, the small square that is eliminated in the second step in

Figure 5; and “the thing that is 6” will be the excess of the new length over the width.

No 38—a kind of rectangular counterpart of No 1—may be even more elucidating, because the

solution builds on a fallacy which turns out to make excellent sense in a diagram:

If indeed he has said to you: I have aggregated its longer and shorter sides and the area, and

what resulted was 62; and the longer side exceeds the shorter by two. How much, then, is

each side?

The way to find this will be that you subtract 2 from 62, and 60 remains, then add 2 to

the half of the number of sides, and 4 results. Join this to 60, and 64 results. Thus take its

root, which is 8. This, in fact, is the longer side. And if you want the shorter, subtract 2 from

8, and 6 remains, which is the shorter side.

Figure 6 shows what goes on: We start as before, but this time, taking advantage of the coincidence

between the number of sides involved and the excess (and thereby depriving the solution of any
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general validity), we produce the gnomon by moving the width to a position along the length and

splitting off the excess from the length. The gnomon is completed as a square by fitting in the

loose end of the length together with another piece (with width 1 and length) equal to “the half of

the number of sides” (that is, equal to the number of sides actually involved). The area of the

completed square being 64, its side (which equals the length according to the diagram) is 8.

The correct solution of No 43 might in principle have been

Figure 6. Liber

mensurationum, the

procedure of No 38.

obtained by other means than the use of a diagram (there are always

many ways to obtain a correct result), even though it seems difficult to

explain the precise phrasing without the geometrical cut-and-paste

interpretation. The lapses of No 38, on the other hand, can only have

resulted meaningfully from a representation where it goes without

saying, firstly that the excess of length over width equals the number of

sides involved, and secondly that the two together contain the

completing square (the number of sides translated into “projections”)—

that is, in a geometrical representation drawn or imagined in more or

less correct proportions. All in all we may confidently conclude that

Abū Bakr’s standard method was based on geometrical operations—and

that at least the method used in the problems translated above was in

naive cut-and-paste style.21 Moreover, the geometrical operations

concern the very entities which define the problems22—and these, as

pointed out in passing above, are always geometrically meaningful. They do not involve entities

like αQ or βs (or γl1 – δl2) but instead: the single area; the side, both sides, or all four sides; the

two diagonals of a rhombus; etc.

The geometrical technique of Abū Bakr’s mensuration algebra recalls what one encounters in

Old Babylonian texts, and “the four sides and the area” certainly recalls BM 13901, No 23. No

surviving Babylonian problem possesses precisely the structure of Abū Bakr’s Nos 38 and 43, but

one text (also belonging to the early phase of the development of Old Babylonian algebra) contains

a close parallel, which happens also to make use of a trick for its solution which corresponds to a

change of variable: AO 8862 No 1.23 Here, in symbolic translation, x y + (y–x) = 3`3°, y + x =

27; by addition, x y + 2y = (x+2) y = 3`30° or X y = 3`30°, y + X = 27 + 2 = 29.

Several other similarities between the Old Babylonian corpus and the standard part of Abū

Bakr’s quasi-algebraic problems can be enumerated: in particular, certain shared characteristic

methods; furthermore, a highly systematic and rather intricate shift between past and present tense

and between the first, second, and third grammatical person (there is also one significant though
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only partial divergence in this domain, which we shall discuss below). We may thus safely

conclude that the two kinds of quasi-algebra are somehow connected. How they are connected is a

question to which we shall return.

IV. Twelfth- and thirteenth-century evidence

First, however, we shall look at two later authors who still draw on the same tradition:

Abraham Bar Hiyya—better known as Savasorda, from a twisted pronunciation of his court title—

and Leonardo Fibonacci.

Savasorda’s early twelfth-century Hibbur ha-mešihah we’tišboret (Collection on Mensuration

and Partition), translated into Latin by Plato of Tivoli as Liber embadorum (Book of Areas)24, has

its main emphasis on genuine geometrical computation, in clear contrast to Abū Bakr’s work.

Equally in contrast to Abū Bakr, Savasorda also draws on the Elements, first in the initial chapter,

where he copies the definitions from Elements I and VII and a number of theorems, and later in the

work in a number of proofs. At one point (chapter 2, part 1, §7), however, he tells that before

going on with triangles and with those quadrangles whose treatment presuppose triangulation, he

will present some problems “so that by solving them, with God’s assistance you may prove

yourself a keen and swift enquirer”. First come some problems concerning squares:

§8. s = 10, d?

§9. d = √200; s?

§10. Q–4s = 21, Q? s?

§11. Q+4s = 77, Q? s?

§12. 4s–Q = 3, su? (Both solutions are given).

Without doubt Savasorda has borrowed this sequence of problems, and no doubt it is related to

what we encountered in the Liber mensurationum. It is uncertain, however, and rather implausible

that he used Abū Bakr’s manual directly. If he had done so and then made the present meagre

selection, changing furthermore the order in §§9–11 and the value of the unknown in §§10–11, it

does not seem likely that he would keep §12 unchanged (comparison between the treatments of

rectangles in the two treatises supports this conclusion). That the side of §§10–11 is precisely 7 is

also in itself noteworthy, as possibly related to the crude approximation that was behind Abū

Bakr’s Nos 16 and 18 (side 10 and diagonal 14).

Abū Bakr’s standard method appeared to be a geometrical cut-and-paste procedure referring to

geometrical diagrams, but at least Gherardo’s translation brings no diagrams beyond those that

show the square, the rectangle, the rhombus (etc.) with which the problems deal. Savasorda’s
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manual does contain diagrams demonstrating the correctness of his

Figure 7. The naive

diagram showing that

d
2 ± 2A = (l1 ± l2)

2 in a

rectangle.

solutions (on the other hand, Savasorda provides no al-jabr

solutions).25 Formally, however, these refer to the Euclidean

theorems which are reported in the introduction. It is therefore

possible that they have been associated afresh with the traditional

problems by some editor (Savasorda or a predecessor) with Euclidean

schooling or familiar with Thābit ibn Qurrah’s Verification of the

Problems of Algebra through Geometrical Demonstrations (which

proves the correctness of the standard algorithms of “the al-jabr

people” for the solution of mixed second-degree problems by means of Elements II.5–6 in a way

which is very similar to Savasorda’s). It could also be, however, that this editor simply

reformulated a number of traditional and still current naive geometrical procedures in Euclidean

style—this would be quite easy, since the Euclidean theorems in question look precisely as

“critical” recastings of a naive cut-and-paste inheritance (compare, for instance, Elements II.6 with

Figure 2; the argument is specified below, see p. 22): in other words, it is possible but not sure that

Savasorda’s diagrams descend directly from the procedures traditionally connected with his quasi-

algebraic problems.26

Leonardo Fibonacci wrote his Pratica geometrie (see note 4) in 1220, and certainly drew on

many sources. As Maximilian Curtze pointed out in the critical notes to the Liber embadorum,

Savasorda is one of them. The whole structure of the work indicates that Leonardo has read the

Liber embadorum. Quite a few of the shared features, however, derive not from direct borrowing

but from one or more shared sources.

This regards precisely the group of problems which concerns us here. As pointed out by

Curtze, Savasorda’s §§8–12 recur in the Pratica. Their order, however, has been changed, as has

some of the parameters (+n counts lines from the top, –n from the bottom of the page).

p. 58+6. s = 10, d?

p. 58–3. d = √200; s?

p. 59+5. Q+4s = 140, Q? s?

p. 59–15. Q–4s = 77, Q? s?

p. 60+10. 4s–Q = 3, su? (Both solutions are given).

The formulations, furthermore, are wholly different from Savasorda’s, even though at other places

(for example, when Abū Bakr’s No 38 is reproduced—cf. below) the phrases of a source are taken

over without any change beyond grammatical polishing. Most decisive, however, is that several of

Leonardo’s deviations from Savasorda agree with the “background tradition” as we know it from

Abū Bakr. Like the latter in Gherardo’s translation, Leonardo refers to quatuor eius latera, while
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Savasorda takes away omnium suorum laterum in unam summan collectum; and like Abū Bakr,

Leonardo’s side in the problem Q + 4s = A is 10.27

There can be no doubt that Leonardo had Gherardo’s version of the Liber mensurationum (in

full or in excerpt) on his desk while writing parts of the Pratica. A striking proof is provided by

the problem dealt with from p. 66–13 onward, which coincides with Abū Bakr’s No 38 (see above, p.

12):28

Again, the two sides with the expanse amount to 62; and the larger side exceeds the smaller

by two. How much then is each single side?

The way to find this will be that you subtract 2 from 62, and 60 remain, then add 2 to

the half of the sides, and 4 result. Join this to 60, and 64 result. Thus take their root, which is

8. That, in fact, is the longer side. And if you want the shorter, subtract 2 from 8, and 6

remain, that is the shorter side. For example: posit the smaller side as a thing, then the larger

will be a thing and two dragmas. From the multiplication of this shorter side by the longer

results the expanse. Therefore multiply the thing, that is the smaller side, by the thing and by

two dragmas, and you will have a treasure and two roots as the expanse; which, if you add to

them the two sides, namely 2 roots and 2 dragmas, will be a treasure and 4 roots and 2

dragmas, which equal 62 dragmas. Remove 2 dragmas in each place, and a treasure and 4

roots remain, which equal 60, and so on.

We see that the statement differs from Abū Bakr’s—among other things, Leonardo speaks here

about the “larger” and “smaller” side, where Abū Bakr/Gherardo has “longer” and “shorter”. In the

end, Leonardo gives a solution by means of al-jabr (which he seems to regard as an explanation,

even though completion of the al-jabr procedure would highlight the fallacy),29 where Abū Bakr

has none in this particular problem. In the description of the standard procedure, however, all he

has done is to change the grammatical number, considering “60” etc. as plurals and not singulars.

In other places, Leonardo has geometrical proofs, some of them similar to those of Savasorda.

We may look at Leonardo’s treatment of “the four sides and the area” (p. 59+5):

And if the surface and its four sides make 140, and you want to

Figure 8. Leonardo’s

diagram for “the area and

its four sides make 140”.

separate the sides from the surface. Let a quadrate ezit be put

together, and the rectangular surface ae added to it. And let ai
prolong the straight line it, and be prolong the straight line ez;

and let each of the straight lines be and ai be 4 because of the

number of the sides of the quadrate; because the surface ae
equals four sides of the quadrate et, since the side ei of the latter

is one of the sides of the surface ae; and the surface et contains

indeed the expanse of the quadrate zi, and [not] its four sides.

Therefore the surface za is 140; and that is what we have said,

namely that the treasure with four roots equal 140; and the

treasure is the quadrate et, and its four roots are the surface ae. Divide indeed the straight line

ai in two equals at the point g; and because the line ti is added to the line ai, then the

rectangular surface it on at with the square on the line gi will be equal to the quadrate on the

line gt. But the surface it on at is as the surface zt on at, since it is equal to tz. Thus the

surface zt on at with the square on the line gi equals the square on the line gt. But zt on at is

the surface za, which is 140. Which, when the square on the line gi, namely 4, is added to

them, give 144 as the quadrate on the line gt; therefore gt is 12, namely the root of 144.

Therefore, if gi, namely 2, are dropped from gt, remains it as 10, which is the side of the

quadrate et; whose expanse, namely 100, if its four sides are added, which are 40, will be 140,
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as claimed. And like this is done in all questions in which a number equals one square and

roots, namely that to this number is added the square of the half of the roots, and the root of

the sum is found; from which the half of the posited roots is removed, and the root of the

treasure which is asked for will remain; which when multiplied by itself makes the treasure.

For example: 133 dragmas equal one treasure and twelve roots. Therefore, if we add the

square on the half of the roots, namely 36, to 133, they will make 169; when 6, namely the

half of the roots, is subtracted from its root, namely from 13, 7 will remain as root of the

treasure asked for; and the treasure will be 49.

The geometrical proof is similar to Savasorda’s (and Thābit’s), and the same observations

could be made. The treatment of the problem “the two sides with the expanse amount to 62 ...”

(above, p. 16) supports the conclusion that Leonardo has no direct access to the naive procedures

which had still been known to al-Khwārizmı̄ and Abū Bakr. It is also characteristic that Leonardo

only gives an al-jabr treatment of the “four sides and rectangular area” (Abū Bakr’s No 43, where

the naive procedures were most clearly reflected in the phrasing—see above, p. 11).

This would go by itself if Leonardo’s only windows on the tradition were Savasorda and Abū

Bakr/Gherardo. Plausibly, however, he has also known at least one other version of Abū Bakr’s

manual or a close relative of this work. Gherardo, indeed, had worked on a defective manuscript, as

revealed by certain corrupt passages and by references backward to problems which in the actual

manuscript come later. Among the seemingly corrupt passages is the solution of problem No 14, “I

have aggregated the four sides [of a square], and they are 3/8 of its area.” At the corresponding

place, Leonardo has “the four sides and 3/8 of the expanse equal 771/2”. It is unlikely that Leonardo

(who was a fairly systematic writer) should have produced this problem in order to repair the defect

in Gherardo’s version, since the problem is preceded by 4s = 2/9Q, and followed by 4s = Q and 4s =

2Q. It is also remarkable that Leonardo this time mentions the sides before the area, as done by

Abū Bakr and in our Old Babylonian tablet. In the preceding treatment of the problem “sides plus

area equal 140,” Leonardo has indeed normalized the order of the members; there is certainly no

reason to expect that he would innovate in this respect when repeating an inherited problem and

return to the ancestral idiom when inserting a problem of his own making. The problem will hence

have been borrowed, if not from a different version of the Liber mensurationum, then from its

closest kin.

Savasorda, Gherardo and Leonardo have thus been in touch with at least three different

versions of the quasi-algebraic tradition to which the problem of “the four sides and the area”

belongs (as we shall see below, Pacioli seems to use material stemming from a fourth version). All

these versions, however, appear to have lost contact with the original naive-geometric techniques,

replacing (or possibly recasting) those proofs which allowed that with corresponding propositions

from Elements II, and handing down those solutions which did not allow such Euclidization (like
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Abū Bakr’s Nos 38 and 43) without geometrical support (which explains why Leonardo gave up in

front of No 38, cf. above, note 29).30

The transformation of the tradition between Abū Bakr’s and Leonardo’s time, and its gradual

assimilation to an increasingly geometrized al-jabr tradition, is also shown by another feature. Abū

Bakr, as we remember, took great care to distinguish the “standard procedure” from the al-jabr

method, and to explain how “the treasure” of the latter represented the area of the square (etc.).

Savasorda, as we saw, was even more respectful of the geometrical tradition, and does not mention

the al-jabr tradition (which would anyhow, one may presume, not have been be very informative

for his intended public); his only algebraic theory is borrowed from Elements II. Leonardo, as we

see, and as it is made even more explicit in the beginning of the section on quadrilaterals (pp. 56f),

has abolished the distinction completely. Where al-Khwārizmı̄ tells number to fall into three

classes, roots, treasures, and simple numbers without any reference to either31, Leonardo tells the

three natures of numbers and their fractions to be roots of squares; squares; and simple numbers:

this in spite of obvious al-Khwārizmı̄an inspiration for the passage in question (revealed by

characteristic phrases borrowed from Gherardo’s translation of al-Khwārizmı̄).

Savasorda’s and Leonardo’s texts thus tell us two things. Firstly, that the tradition carrying the

problem about “the four sides and the area” was still present in their world. Secondly, that it had

been reduced to a shadow; after having served al-Khwārizmı̄’s coordination of al-jabr with

geometry, and after centuries of coexistence with the Euclidization of applied geometry, it had no

mathematical standing of its own, and it only survived as a collection of venerated problems. As

Gherardo must somehow have tried to express when translating Abū Bakr’s al-jabr as aliabra,

algebra had come to encompass much more than the purely numerical technique of the pre–al-

Khwārizmı̄an al-jabr people.

V. Reconstructing the process

In the closing section we shall consider the end of the disintegration process. Since, however,

the forces at work in this phase differ from those which shaped the earlier development, it may be

convenient to discuss first what we can learn about the prehistory of algebra by following the

career of “the four sides and the area” and its cognates from the cradle through the High Middle

Ages. This we shall do, on one hand by summing up and connecting observations which were

already made above, on the other by drawing new conclusions.

The first question concerns precisely the cradle. Our earliest encounter with the tradition and
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the characteristic problem embodying it was in an odd corner of an Old Babylonian mathematical

scribe school text. Several features of the formulation of the problem, however, hinted at real

surveying practice—and our next encounter with the problem was in an Islamic handbook

concerned with that very practice. Is it likely that a problem created within the tradition of scribe

school algebra but dressed as a real problem for surveyors would be adopted by these together with

a narrow selection of other problems and continued as a tradition of mensuration algebra, while the

main body of Old Babylonian algebra would remain the exclusive property of the scribe school and

die with it? Or should we rather expect the scholar-scribes to be the debtors?

The question is a variant of a traditional problem of folklorists: Are folktales gesunkenes

Kulturgut, as the Romanticists believed, or not? Are folktales the remnants of myths and high-level

literature, or are myths created on the basis of folk tale motifs? In the final instance: Is genuine

culture produced by prophets, priests and scholars alone, and the low culture of other strata merely

derivative, misconstrued, and defective?

Several observations speak decisively against the hypothesis of a scribe school descent, and in

favour of an origin of the mensuration algebra among practical geometers. One of these is the

length of the side of the Old Babylonian version of “the four sides and the area”. As in Abū Bakr’s

and Leonardo’s corresponding problem, it is ten—but ten minutes. Now, 10 is an obvious choice in

any culture using a decadic number system; 10´, however, is not—neither a priori nor according to

the Old Babylonian tablets. Indeed, 10 in any order of sexagesimal magnitude (including 10°)

would be an untypical side length in any Old Babylonian text. It is highly improbable (to say the

least) that the queer problem should have been invented within the scribe school and been

constructed around the anomalous value of the unknown side, and then taken over by people who

by accident could correct 10´ (which they would see as 1/6) into the obvious value 10. The scribe

school mathematician, however, if borrowing a problem with the parameter 10, could reasonably be

expected to locate this number in his habitual order of magnitude, which in the tablet in question is

that of minutes.

Another observation has to do with the topic and general character of the problem. As already

hinted at, the combination of the geometrically meaningful (all four sides of a square field) with

the practically meaningless (which practitioner ever knew the sum of the sides and the area without

first knowing them separately?) gives the problem the character of a bizarre riddle. Such riddles,

when mathematical, are known as recreational problems. In pre-Modern times, they were

transmitted within environments of mathematical practitioners, where they served the purpose told

by Savasorda: “that by solving them, with God’s assistance you may prove yourself a keen and

swift enquirer”; or, in another formulation taken from a Carolingian problem collection (I quote the
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puzzle in full):

A paterfamilias had a distance from one house of his to another of 30 leagues, and a camel

which was to carry from one of the houses to the other 90 measures of grain in three turns.

For each league, the camel would always eat 1 measure. Tell me, whoever is worth anything,

how many measures were left.32

In other words, these problems—which according to their dress belong within the domain of the

practitioners in question (surveyors and caravan traders, respectively) but which are more complex

or more bizarre than the problems solved in everyday practice—serve to train the mental agility and

enhance the professional self-esteem of the members of the craft (whence the term “brilliant” used

by al-Khwārizmı̄ to characterize the useless second-degree part of al-jabr—cf. above, p. 6).33

Invariably, they have something stunning in their formulation: unless a clever trick is applied (an

intermediate stop), the camel will eat exactly everything; in another widespread problem, 100

monetary units will buy exactly 100 animals; repeated doublings run to 30 or 64, because this fits

the days of the month or the cases of a board game; etc.34

The topic—the real sides of a real field; the striking parameter—exactly all four sides; and the

solution by means of a doubly weird trick—quadripartition and quadratic completion: all three

features indicate that “the four sides and the area” was hatched not in a scribe school but in a non-

scholastic environment of practical geometers.

A third observation allows us to locate this environment tentatively in time and space. As

stated above (p. 13), Abū Bakr’s discourse is astonishingly close to what we find in Old

Babylonian school texts. There is one exception to this rule, however. Abū Bakr always has a

hypothetical “somebody” posing the question (in the first person singular, past tense). Old

Babylonian texts, instead, start directly with the question (as in BM 13901, No 23), implying that it

is the teacher who asks. One group of texts, however, starts its problems with the familiar “if

somebody has asked ...”. These texts come from Tell Harmal and Tell Dhiba i, both in the

Kingdom of Ešnunna, and belong to the earliest eighteenth century B.C.35 Ešnunna is an early

focus for that Akkadian scribal culture which arose around the mid-Old Babylonian period: late

nineteenth century Ešnunna produced the first law code in Akkadian, half a century in advance of

the Codex Hammurapi. Since algebra is an Akkadian genre with no identified Sumerian antecedent,

Ešnunna may thus be the location where the recreational lore of Akkadian-speaking practical

geometers was adopted into the curriculum of the Akkadian scribal school.

An Akkadian origin fits the side of our square field. Akkadian, as Arabic (and as the likely

intermediate carrier language of our tradition, Aramaic), is a Semitic language and has a decadic

number system. It also fits the name “Akkadian method” given to the quadratic completion in a late

Old Babylonian mathematical text; it agrees with the observation made by Robert Whiting that the
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problems contained in a school text from the Old Akkadian period (the 22nd century BC) dealing

with area measurement are so much facilitated by familiarity with the geometric-“algebraic” rule

(R–r)2 = R2 – 2Rr + r2 that this rule is likely to have been presupposed; and it matches the presence

of a tablet with a bisected trapezium (another favourite problem following our tradition until Abū

Bakr and Leonardo) in an Old Akkadian temple.36 It looks as if already the Old Akkadian scribe

school had adopted part of the recreational lore of the Akkadian surveyors, but that the strictly

utilitarian neo-Sumerian school (21st century BC) did not transmit it.37

Since there is, anyhow, close affinity between the Old Babylonian scribe school algebra and

the tradition of mensuration algebra, it is reasonable to assume the former to have developed from

the adoption of the latter under the fecundating influence of the systematic spirit of the school. The

quadratic completion, originally another weird trick comparable to the quadripartition and the

intermediate stop, may have been the cornerstone on which the whole stupendous edifice of Old

Babylonian algebra was erected.

The overlap between the algebra of the scribe school and that of the Liber mensurationum

(and other post-Babylonian sources) allows us to draw up a list of problems which can be ascribed

with some confidence to the mensuration algebra of the early Old Babylonian epoch. Of course

(sticking to the symbols introduced on p. 8), s + Q = α and 4s + Q = β (we may even be confident

that α = 110, β = 140); probably also problems with differences (area minus side(s), and side(s)

minus area) and questions about the diagonal when the side is given, and vice versa. For rectangles,

furthermore, A = α, l1 ± l2 = β; A + (l1 ± l2) = α, l1 l2 = β; A = α, d = β (this latter problem is

found on the Tell Dhiba i-tablet). Highly likely is also the presence of problems dealing with

several squares, at least Q1 ± Q2 = α, s1 ± s2 = β (a partial alternative, less plausible however, is the

presence of the rectangle problems l1 ± l2 = α, d = β).38 Rhombi and right triangles (both of which

are used as pretexts for the formulation of quasi-algebraic problems in the Liber mensurationum)

seem to be beyond the horizon, as is anything involving non-right triangles.

Old Babylonian scribal algebra developed into a sophisticated discipline, but most of its higher

achievements were lost when the Old Babylonian era was interrupted by conquest and social

breakdown after 1600 BC, at which occasion the scribe school also disappeared. The late

Babylonian period, in particular in the Seleucid era (from 300 BC onwards), produced a certain

revival of algebraic activity, it is true; discontinuity in the use of Sumerian word signs demonstrate,

however, that much the transmission had taken place outside the scribal environment, and that a

readoption of material from the mensuration algebra tradition occurred.

In the meantime, it appears that new problem types had been invented or imported into this
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tradition. The most systematic Seleucid treatment of second-degree problems is found on the tablet

BM 34568.39 All problems except two deal with rectangles, where various combinations of sides,

diagonal and area are given.40 With a single exception, the rectangle problems recur in the Liber

mensurationum (at times with other parameters); moreover, the exception (l1 + D and l2 + d given)

is not really one, since Abū Bakr’s No 36 (l1 + d and l1 – l2 given) is reduced to the Seleucid

problem and then solved in the same way.

Interestingly, the only rectangle problem dealing with a diagonal of whose presence in the

early mensuration algebra we are sure (viz A = α, d = β, found in the Tell Dhiba i tablet) is absent

from the Seleucid anthology. Also interesting is one of the two problems in the tablet which do not

consider rectangles. It deals with a reed leaning against a wall, and is equivalent to the rectangle

problem d – l1 = α, l2 = β (Abū Bakr’s No 31). Nothing with the same mathematical substance is

found in the Old Babylonian corpus. The dress, on the other hand, is familiar, but originally it

covered a problem translatable into the much more trivial d = α, l1 = α – β.

On the whole, the Seleucid tablet thus looks like a listing of new problems; the reed problem

may be meant to demonstrate how this fascinating new wine could be poured into an old cherished

bottle, thereby lending new quality to both. In any case, and quite in contradiction to the traditional

view, the tablet demonstrates the discontinuity of Babylonian mathematics in spite of apparent

continuity.41

Also at variance with widespread convictions, but the other way round, is the perspective we

get on the core of Elements II if we correlate propositions 1 to 10 of the Euclidean work with what

we have come to know about mensuration algebra.42 Postponing for a moment propositions 1 to 3,

the rest can be seen as quasi-Kantian critiques of the familiar procedures: prop. 4 is used, e.g, by

Leonardo when he finds the sum of the sides of a rectangle from the diagonal and the area, while

Savasorda (proceeding like the Tell Dhiba i text) finds their difference via prop. 7;43 prop. 6

explains the solution of all problems Q ± αs = β (including “the four sides and the square”) and

A = α, l1 – l2 = β (and Leonardo quotes it on these occasions); prop. 5 has a similar relation to

rectangular problems A = α, l1 + l2 = β and to αs – Q = β (again noticed by Leonardo); prop. 7,

beyond the use made of it by Savasorda, explains the rule which seemed to be presupposed already

in an Old Akkadian school text (cf. above, p. 21); prop. 8 does not seem to enter any problem

directly which we have discussed so far; but it may be connected to the configuration of “four sides

and area” (showing that, if we add the four sides to a square (s), we do not get a square (s+2)—

instead, we have to add the four sides of the average square (s+1); conversely it can be linked

with the concentric inscription of one square into another (also familiar from Old Babylonian
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practical geometry). Propositions 9 and 10, finally, which like prop. 8 serve nowhere else in the

Elements (and which must therefore have been supposed to possess a value of their own),44 solve

the problems where the sum of two square areas and either the sum or the difference between their

sides are known45 (Leonardo also makes appeal to prop. 10 a couple of times).

The proofs of propositions 9 and 10 are obviously of the Greek and not the naive type. The

others, however, fall into two sections, of which the second is in essence a cut-and-paste proof, and

the first explains why the various constituents of the diagram are really squares, rectangles etc.

Section 1, we may say, takes care that the subsequent cut-and-paste section is not naive.

Propositions 1 to 3 have a similar function. Prop. 1 is a general “critique of mensurational

reason,” justifying the cutting and pasting of rectangles; propositions 2 and 3 apply this insight to

the particular situations where sides (provided with a “projection,” it goes by itself) are added to or

subtracted from a square.

Elements II.1–10, we may hence conclude, is closely connected to the cut-and-paste

mensurational algebra and is precisely, as formulated above, a critique. We may observe,

furthermore, that the whole group of propositions points back to the stock of problems and

procedures which seems to have been present already in Old Babylonian times. There is no trace of

the new problem types from the Seleucid tablet.

Arguments can be given that the kind of area geometry which was canonized in Elements II

was developed in the fifth century BC in connection with a theoretical investigation inspired by

surveyors’ geometry and algebra.46 If this is really so, then there is some reason to believe that the

new problems reached or arose in the Near Eastern and Mediterranean world after 500 BC, but

before 200 BC. We may think, either of the contacts resulting from Alexander’s conquests, or of

the general establishment of cultural interaction along the Silk Road.47

It may be added that the small group of second-degree problems in Diophantos’s Arithmetica I

also refer to what appears to be the original core of the mensuration algebra: a rectangle with given

area and given sum of (prop. 27) or difference between (prop. 30) the sides; and two squares with

given sum of the sides and given sum of (prop. 29) or difference between (prop. 29) the areas.

The next occasion on which the tradition of mensuration algebra turns up in familiar sources is

at its encounter with the numerical al-jabr practice, and when al-Khwārizmı̄ draws upon its cut-

and-paste technique in order to demonstrate the correctness the al-jabr calculations. These

geometrical proofs were already discussed above and need not be taken up again. Only one

observation should be added: when teaching the addition and subtraction of binomials involving

roots, al-Khwārizmı̄’s standard exemplification of the root—that is, we must presume, the first

square root which his reader is expected to recognize as not reducible to a number—is √200, the
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diagonal of our familiar 10×10-square. Unless this concurrence is purely accidental (which is not

likely—cf. also note 13 on the possibility to distinguish chronological strata in the mensuration

tradition by means of changing approximations to this length), the practice from which al-

Khwārizmı̄ borrowed his proofs thus appears to have been fairly well-known.

Mensuration algebra did not disappear as an independent tradition after al-Khwārizmı̄’s

integration of its methods with al-jabr. As we have seen, at least three or four different versions

could be found in the Islamic world in the twelfth and thirteenth century. But as we have also seen,

it had lost its raison-d’être as a separate mathematical tradition. In this as in other fields, Islamic

mathematics initiated an integration of theoretical and practitioners’ mathematics which was, in the

Modern epoch, to transform the latter enterprise into applied [theoretical] mathematics. Gherardo,

as a faithful translator, would still render Abū Bakr’s sharp distinction between (geometrical)

standard method and (numerical) al-jabr. Leonardo the mathematician, however, did not see the

point, or saw no point in doing so.

VI. The End of a Tradition

However much the tradition of mensuration algebra had become superfluous from a theoretical

point of view, it did not die easily in Christian Europe once it had been adopted. Thus, in the

geometrical part of his Summa de arithmetica, Luca Pacioli tells that

even though rather much has been said about the rule of algebra in the part on arithmetic:

none the less, something must be said about it here.48

What needs to be said turns out to be precisely what Leonardo tells in his Pratica geometrie. The

treatment is so close to Leonardo that misprints in Pacioli’s lettering of diagrams can be corrected

from Leonardo’s text (this was how I stumbled upon the affinity between the texts). But there are

certain puzzling exceptions to his faithfulness: Thus Leonardo, as we remember, did not speak

about “the four sides and the area” but about “the area and its four sides” making up 140. Pacioli,

however, returns to the original pattern. Since this pattern was as foreign to Renaissance algebra as

to Old Babylonian algebra, Pacioli can not be expected to have reinvented the ancestral formula on

his own: it must have been around. As it has sometimes been suspected, Italian Late Medieval

algebra, however much it was indebted to Leonardo, must have received impulses from the Islamic

world through supplementary channels.49

The last appearance of the set of problems once belonging to the tradition of mensuration

algebra is in Pedro Nunez Libro de algebra en arithmetica y geometria from 1567 (at least the last
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which I know about—but my reading of Renaissance sources is far from complete). Part III,

chapter 7 has the heading “About the practice of algebra in geometrical cases or examples, and

firstly about squares”.50 It is obvious that Nunez has profited much from Pacioli, as also told in

his concluding address to the reader (fol. 323v). In our now customary abbreviations, the examples

about squares are the following:

1. s = 3: Q?

2. Q = α: s?

3. s = 3: d?

4. d = 6: s?

5. d+s = 6: d? s?

6. d s = 10: d? s?

7. d–s = 3: d? s?

8. s (d–s) = 15: s? d?

9. d (d–s) = 14: s? d?

10. s+Q = 90: s? Q?

11. d+Q = 12: Q? s?

12. s+d+Q = 37: s? d? Q?

13. Q s = 10: s? Q?

14. d Q = 12: s? Q?

These translations are misleading in so far as they conceal the real format of the examples. This

format follows that of the Euclidean Data (and of Jordanus de Nemore’s De numeris datis)—for

instance, No 11 tells that “if the diameter and the area of the square together are known, then each

is known separately”. Only afterwards the numerical example is introduced. In this respect, the text

is thus developing toward theory. It has also dropped the opaque solutions by unexplained

numerical algorithms (the rudiments of naive cut-and-paste procedures), and starts directly with the

algebraic solution.

But the themes are traditional. Nunez, when advertising the capabilities of algebra, feels the

need to demonstrate that this wonderful technique is able to resolve both the traditional problems

and even more complex problems of the same kind (like No 12). He only presents one example for

each problem type, and thus drops “the four sides”. For the last time, however, “the side” appears

before the area in No 10, betraying the Bronze Age descent—and for the last time (before Viète

changed the terms in which the problem of homogeneity was discussed) it is explained that what is

added to the area is another area, “a root” being the side provided with a “projection 1” (cf. also

Nunez’ fol. 6r).

Within a generation, Viète was to show the capability of algebra to elucidate much more

complex problems. If algebra was still in need of commercials, much more impressive applications

than artificial mensuration geometry were now at hand. After somewhat more than three thousand

years, “the area and the four sides,” as the totality of mensuration algebra, could leave the world so

quietly that nobody noticed its death, and nobody remembered that it had ever existed.
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introduction. Most likely, however, the formulation and solution of second-degree problems by

means of “treasures,” “roots” and “dirhems” (cf. below) was not only the core of al-jabr but also

the meaning of the term stricto sensu.

10. An analysis of the relevant parts of this treatise, together with arguments for the dating, will be

found in my “Al-Khwârizmî, Ibn Turk, and the Liber Mensurationum: on the Origins of Islamic

Algebra,” Erdem (Ankara), 1986, 2: 445–484; cf. also my “‘Algèbre d’al-ǧabr’ et ‘algèbre
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since early times by the term mūla, “base” or “root [of a tree]”—see Datta & Singh, op. cit., part I,

pp.169f.
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difference between the sides. If he had thought of the naive diagram probably underlying his rule,

however, it might also have told him that (l1+l2)
2 = d2+2A, which would have simplified the

solution (cf. Figure 7). However, an early Old Babylonian problem from Tell Dhiba i to which we

shall return (p. 20 and later) applies precisely the same method as Savasorda. Both authors (and the

whole tradition) may thus have used the problem to show the combination of several standard

methods.

- 29 -



It is noteworthy that the proof of Elements II.7 builds on the sub-diagram MGCJ of Figure 7

(without diagonals), while that of Elements II.4 (from which follows that (l1+l2)
2 = d2+2A, of which

Leonardo Fibonacci makes use when solving the corresponding problem) employs the complete

diagram (without the lines EJ and KH and without diagonals).

27. We may also mention Leonardo’s counterpart of Savasorda’s §18 (cf. above, note 26), where

Leonardo (like Abū Bakr) finds the sum of the sides, and refers in his proof to Elements II.4.

28. The two translations have been made so as to show precisely the extent and character of the

agreements/disagreements between the two texts, in vocabulary as well as in the choice of

grammatical forms. For the sake of creating one-to-one-correspondences, the translation “expanse”

has been used for embadum, a term for the area which Leonardo share with Savasorda/Plato.

29. In the completion of the al-jabr procedure, the 4 to be added to 60 are to be found as the

square on half the number of roots, not as 2 plus this half. The root (and thus the shorter side),

furthermore, is found as √64 minus half the number of roots, and the longer side finally as the

shorter plus 2 the difference between the sides.

All this will certainly have been recognized by Leonardo. In all probability, his “and so on”

serves to conceal that he does not understand what goes on.

30. There is a vague possibility that Leonardo still had access to the habitual diagrams for a

number of complex problems involving the diagonal of a rectangle (e.g., l1+l2+d = 24, A = 48,

Pratica geometrie p. 68 (cit. n. 4), where he introduces diagrams which generalize the one which

was shown in Figure 7. But he may also have developed these diagrams anew, since they follow

without too much difficulty from the procedure.

31. Hughes, “Gerard of Cremona’s Translation,” p. 233 (cit. n. 7).

32. Propositiones ad acuendos iuvenes, problem 52, version II, ed. M. Folkerts, “Die älteste

mathematische Aufgabensammlung in lateinischer Sprache: Die Alkuin zugeschriebenen

Propositiones ad acuendos iuvenes,” Österreichische Akademie der Wissenschaften, Mathematisch-
Naturwissenschaftliche Klasse. Denkschriften (Wien, 1978), 116. Band, 6. Abhandlung, here p. 74.

Emphasis added.

33. This relation between professional mathematical practice and recreational mathematics is a focal

theme in my “Sub-Scientific Mathematics. Observations on a Pre-Modern Phenomenon,” History of
Science, 1990, 28: 63–86.

34. This characteristic has a double explanation: A riddle is always better the more surprising its

formulation. Moreover, as long as the parameters of a problem are not noteworthy, they are likely

to change when transmitted within a semi-oral culture; once somebody has chosen a remarkable

parameter it is likely to be remembered, both because this follows from remarkability per se, and

because it makes the riddle as a whole better.

Mathematical riddles are hence liable to be born striking, and to conserve this characteristic

when they are transmitted. If by accident they are born without marked parameters, a kind of

attraction law guarantees that they will acquire them soon (or that they will be forgotten).

A particular variant of the quest for the extraordinary was mentioned above: The presence in

the Liber mensurationum of deliberately opaque and perplexing problem solutions, which the

disciple is asked to look through.

35. The texts were published by Taha Baqir, in “Some More Mathematical Texts from Tell

Harmal,” Sumer, 1951, 7: 28–45, and in “Tell Dhiba’i: New Mathematical Texts,” Sumer, 1962,

18: 11–14, pl. 1–3, respectively.
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36. See my “Algebra and Naive Geometry,” p. 326 (cit. n. 2); R. M. Whiting, “More Evidence for

Sexagesimal Calculations in the Third Millennium B.C.,” Zeitschrift für Assyriologie und
Vorderasiatische Archäologie, 1984, 74: 59–66, here p. 65f; and J. Friberg, “Mathematik,” in
Reallexikon der Assyriologie und Vorderasiatischen Archäologie, vol. VII, 531–585, here p. 541

(Berlin & New York: de Gruyter, 1990).

37. Since no traces of genuine second-degree algebra are found in the Old Akkadian school texts,

we may also surmise that the discovery of the quadratic completion (the “Akkadian method”) took

place somewhere between the 22nd and the 19th century BC.

38. BM 13901 Nos 8 and 9 deal with two squares, about which the sum of the areas and the sum

of/difference between the sides are stated. The square sum of the sides sides (20´ and 30´) is no

square, and thus the problems cannot be transformed into rectangle-diagonal problems without a

change of parameters. Evidently it is not excluded that surveyors’ rectangle-diagonal problems have

been adopted and transformed, and the parameters then changed. However, reflections of our

tradition in classical sources (in particular Elements II, cf. below) and the unquestionable presence

of two-square problems where Q1 – Q2 is given speak in favour of the two-square assumption with

given sum. A sequence of problems about the same two squares in the late Old Babylonian text

TMS V (one of which coincides with BM 13901 No 8) speaks about the smaller square as located

concentrically within the larger one—a configuration that refers to geometrical practice (E. M.

Bruins & M. Rutten, eds., Textes mathématiques de Suse. Paris: Paul Geuthner, 1961, here pp. 46f).

One of the problems (col. III, l. 4, unmentioned and untranslated in the edition) tells the difference

between the areas and the difference between the sides.

39. Ed. Neugebauer, MKT III, pp. 14–17 (cit. n. 1).

40. l1 and l2; l1 and d; l1+d and l2; l1+l2 and A; l1+l2 and d; l1+d and l2; l1+d and l2+d; l1+l2+d and A.

41. This discontinuity can be traced on several levels beyond those already mentioned (Sumerian

word signs and problem types): the structure of the terminology; the construction of problems from

integral solutions and integral coefficients (evidence that the problems have been borrowed rather

directly from the mensuration tradition, without much further systematization or tinkering); and a

tendency to construct solutions from sum and difference rather than semi-sum and semi-difference

(as had been the Old Babylonian habit, and as Abū Bakr would mostly still do in the old

problems).

42. For convenience I translate the propositions into symbols (it should be remembered that such a

translation is always somewhat arbitrary—cf. the two different translations of prop. 7):

1. (a,p+q+...+t) = (a,p) + (a,q) +...+ (a,t).
2. (a) = (a,p) + (a,a–p).

3. (a,a+p) = (a) + (a,p).

4. (a+b) = (a) + (b) + 2 (a,b).

5. (a,b) + (a–b/2) = (a+b/2).

6. (a,a+p) + (p/2) = (a+p/2).

7. (a+p) + (a) = 2 (a+p,a) + (p) ; or, alternatively, (a) + (b) = 2 (a,b) + (a–b).

8. 4 (a,p) + (a–p) = (a+p).

9. (a) + (b) = 2[ (a+b/2) + (b–a/2)].

10. (a) + (a+p) = 2[ (p/2) + (a+p/2)].

We observe that prop. 6 coincides with prop. 5 if only b = a + p. Prop. 5 corresponds,

however, to the situation where the sum of the two sides is known (as in prop. 9, a and b result

from the splitting of a line in unequal segments), and where they are thus drawn in continuation of

each other in the proof; prop. 6, on its part, is adapted to the situation where one exceeds the other

by p, and the proof thus draws them in superposition. Precisely the same relation holds between
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prop. 9 and prop. 10, while prop. 4 and prop. 7 are similarly but not identically correlated.

43. Cf. note 26. It should perhaps be stressed once more that Savasorda’s and Leonardo’s use of

propositions from Elements does not mean that they were employed within the tradition of

mensuration algebra in the form we (and Leonardo and Savasorda) know them, only that they were

still close enough to this tradition to be serviceable.

44. Strictly speaking, prop. 9 is cited, but in what seems to be an interpolated lemma. As pointed

out by Ian Mueller, propositions 8 and 10 might have been cited in the same way, as justifications

of unproved assumptions—Philosophy of Mathematics and Deductive Structure in Euclid’s
Elements, p. 301 (Cambridge, Mass., & London: MIT Press, 1981). It seems as if the kind of

knowledge contained in the three propositions was too familiar to require explicit citation once it

had been proved.

45. They also solve problems about rectangles where the diagonal and either the sum of or the

difference between the sides are known. As argued above (see note 38), at least one of these groups

(most likely the two-square problems) will have belonged to the early phase of the mensuration

algebra.

46. See my “Dýnamis” (cit. n. 5), where further references to work by earlier authors (not least

Wilbur Knorr) on this question are given.

47. Since the second-degree problems which turn up in the first century (CE) Chinese Nine
Chapters on Arithmetic (Chiu chang suan shu. Neun Bücher arithmetischer Technik, ed. trans. Kurt

Vogel, pp. 91f (Braunschweig: Friedrich Vieweg & Sohn, 1968)) are related to the “new” Seleucid

problems (and the dress of one of them, the leaning reed, an obviously borrowing), conquest can

hardly be the only factor involved.

48. Part II, fol. 15r (cit. n. 4).

49. Another suggestive deviation from Leonardo is Pacioli’s version of Abū Bakr’s No 38 (above,

p. 12): It is more correct than the Gherardo translation, which had been repeated so faithfully by

Leonardo. Pacioli, indeed, finds the completing square 4 as “half the number of sides squared” (fol.

19r). Since the Gherardo/Leonardo text is meaningless as it stands, it is highly unlikely that Pacioli

could have used this version and just improved it. If he had done so (for example, supported by an

al-jabr analysis), he could have produced a fully correct solution: instead, his explanation still

presupposes tacitly that the excess and half the number of sides coincide.

We may infer that Pacioli’s source for the pattern “sides and area” is thus not likely to have

been the Gherardo version of the Liber mensurationum.

50. P. Nunez, Libro de Algebra en Arithmetica y Geometria, fol 277vff (Anvers: En casa de los

herederos d’Arnaldo Birckman, 1567).
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The Four Sides 
and the Area: 
Oblique Light on the 
Prehistory of Algebra

Jens Heyrup
University of Roskilde

T ̂ he present essay traces the career of a particular 
mathematical problem—to find the side of a square 
from the sum of its four sides and the area—from its 

first appearance in an Old Babylonian text until it surfaces 
for the last time in the same unmistakable form during the 
Renaissance in Luca Pacioli’s and Pedro Nunez’s works. 
The problem turns out to belong to a non-scholarly tradition 
carried by practical geometers, together with other sim­
ple quasi-algebraic “recreational” problems dealing with 
the sides, diagonals and areas of squares and rectangles. 
This “mensuration algebra” (as I shall call it) was absorbed 
into and interacted with a sequence of literate mathematical 
cultures: the Old Babylonian scribal tradition, early Greek 
so-called metric geometry, and Islamic al-jabr. The article 
explores how these interactions inform us about the early 
history of algebraic thinking.

As far as possible I have referred for detailed docu­
mentation to earlier publications, in particular to my analy­
sis of Babylonian “algebra” and its reflections in later tra­
ditions. In cases where documentation is not discussed in 
depth elsewhere I have still tried to be concise, but nonethe­
less felt obliged to present at least an outline of the full 
argument.

I. An Old Babylonian ^ ŝquare problem’’

A famous cuneiform mathematical text (BM 13901)^ con­
tains as its No. 23 the following problem

In a surface, the f[o]u[r fronts and the surf]ace 
I have accumulated, 41'40". 4, the f[ou]r fronts, 
yo[u inscr]ibe. The igi of 4 is 15'. 15' to 41'40"
[you r]aise: 10'25" you inscribe. 1, the projec­
tion, you append: 1°10'25" makes 1°5' equilat­
eral. 1, the projection, which you have appended, 
you tear out: 5' to two you repeat: 10' nindan 
confronts itself.
The text was written in the Old Babylonian period, 

that is, between 2000 B.C. and 1600 B.C., and probably 
during the eighteenth century B.C.. Originally, it appears to 
have contained 24 problems of apparently algebraic charac­
ter dealing with one or more squares and their sides. In its 
present state, the tablet is damaged, though most problems 
can be safely reconstructed.

The translation is meant to render the terminology as 
precisely as possible, and follows principles which I have 
developed for the translation of Babylonian “algebra”.̂  In 
the present context, only a few words’ explanation can be 
made. Numbers, first of all, are rendered in the degree- 
minute-second notation, which means that 1°10'25" is to be 
read 1 -h ^  +  eo-eo * (One should remember that the original

45
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text contains no indicators of absolute order of magnitude, 
merely the sequence 1 10 25.) “Accumulating” (Akkadian 
kamarunfi) is a genuine addition of numbers, where both 
addends lose their identity and merge into a sum; as here, 
it may be used for additions with no concrete interpretation 
(length plus area). “Appending” {wasabum), on the other 
hand, is a concrete additive operation, where one entity (as 
an example one may think of one’s own bank account) is 
augmented by another (the interest of the year—actually 
labelled “the appended” in Akkadian) without changing its 
identity (it remains m y  account). Appending possesses an 
inverse operation “tearing out” {n asah u m )\ the other (“com­
parative”) subtractive operation “a exceeds b by x” (a eli b 
X ite r)  is used only for concretely meaningful comparisons, 
and is thus not a real inverse of “accumulating.”

The “igi” of a number n  is its reciprocal as listed 
in a table of reciprocals. When having to divide by n, 
the Babylonians would multiply by igi n, using an oper­
ation labelled “raising” {naMm)—probably best explained 
as “calculation [of something] by means of multiplication”; 
other multiplicative operations are “a steps of 6” {b a-r^ a), 
designating the multiplication of a number by a number in 
a multiplication table; “repeating to n ” (ina n esepum), 
which is indeed an n-fold concrete repetition; and “mak­
ing a and b hold each other” (the most plausible reading of 
a u b  sutakulumX which means arranging the lines [with 
lengths] a and b as sides of a rectangle [whose area will 
then be a • 6]. A variant of the latter operation is “making 
a confront itself’ (a sutamhurum), which means making 
a the side of a square. The reverse of the latter opera­
tion is to find out what “makes [the area] B  equilateral” 
(B  ib-sig), that is, what length a will be the side if B  is 
formed as a square (arithmetically: a = y/B).  The “pro­
jection” (wasVum) 1, finally, is a line segment of length 1 
which, projecting orthogonally from another line segment 
[with the length] a, transforms it into a rectangle [with the 
area] 1-a = a. Lengths are measured in the unit nindan (1 
nindan =  6 m) and areas in sar (=  nindan^)

With this is mind, we can understand the text. The 
first line tells that we are dealing with a surface (details 
in the grammar seem to suggest a  f ie ld ) .  The sum of the 
measuring numbers for th e  f o u r  s id e s  (not just f o u r  tim es  

the side) and the area is 41'40". In modem notation, if s 
is the length of the side, this corresponds to the equation 

-\-4s = 41'40", which is the reason that this and similar 
Babylonian problems are generally regarded as algebra. The 
second line prepares a division by 4, which takes place in 
line 3; in our equation, this division would express itself in 
a transformation into (5/ 2)^ +  1 . 5  =  41'40"/4 =  10'25". 
The addition of 1 in line 4 would tell us  that (5/ 2)  ̂+  2 • 1 •

(5/ 2) +  1 =  1°10'25"; finding the equilateral corresponds 
to the transformation 5/ 2 + 1  =  \/P 1 0 '2 5 "  =  1°5', leading 
us to the further conclusion that s/2  = 5'—and finally
5 =  10'.

The numerical steps of the solution are thus meaning­
ful when seen in the perspective of symbolic algebra, yet 
the use of the term “projection” (and the addition of a mere 
“1” instead of “1^” in line 4, which is an otherwise com­
pulsory Babylonian practice) tells us that the Babylonian 
calculator operated in a very different representation—see 
Figure 1: Each of the four sides was thought of as pro­
vided with a projection (that is, a “projecting width”) 1̂  
and thus represented by a rectangle 5 x 1; the surface was 
a square 5 x 5; and the sum was hence represented by 
a cross-shaped configuration. When the Babylonian scribe 
divided by 4 in lines 2-3, what he did was to single out 
one fourth of this configuration, for example, the gnomon 
in the upper left comer. The addition of “1 the projection” 
calls for a general commentary: We think of a square as 
being (for instance) 4 square feet and having the side 2 
feet (knowing that, strictly speaking, the square is a com­
plex configuration which can equally well be characterized 
by any of these parameters). The Babylonians thought of 
the square as being 2 feet and having an area 4 square 
feet.^ Appending “ 1 the projection” thus means fitting in 
the square contained by the gnomon, each of whose sides is 
indeed the projection. Thereby the gnomon is completed as 
a square with known area 1 +  10'25" =  1°10'25", which 
is “made equilateral” by \/l°10 '25" =  1°5'. From this, the 
projection (this time, according to o u r  distinction, viewed 
as the side of the completing square) is tom out, leaving 5' 
as the width of the gnomon leg. “Repeating” this to two, 
that is, uniting it with its mirror image, produces the side 
of the original square, that which “confronts itself.”

FIGURE 1
The procedure of BM 13901, No. 23.
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This “cut-and-paste procedure” is “naive” in the sense 
that everything can be “seen” immediately to be correct. 
(Whenever the word is used in the following, it is to be 
read in this technical sense and never as “gullible.”) There 
is no attempt to prove, for example, that the gnomon is a 
rectangular gnomon and contains precisely a square; such 
“critical” reflection (in a quasi-Kantian sense) had to wait 
until Euclid. But the procedure can be seen to be correct 
(and can be transformed into a “critical” proof without dif­
ficulty), and is thus justification and algorithm in one (as 
is the stepwise transformation of a modem algebraic equa­
tion). It is also analytical in the sense that the unknown 
side is treated as if it were known until it can be isolated 
from the complex relation in which it is entangled. If alge­
bra is understood primarily as the application of analysis 
(as Francois Vi^te would have it), the method is clearly 
algebraic in nature. But if algebra is a science of number 
(or, post-Noether, generalized number) by means of abstract 
symbols, the Old Babylonian “algebra of measurable line 
segments” is not algebra. This proviso should be kept in 
mind in the following when I drop the quotes for reasons of 
stylistic simplicity, speaking simply of Babylonian algebra.

Many features of the present problem are shared by 
the Old Babylonian algebra texts in general: The distinction 
between two additive operations—that is, operations which 
when translated into modem equations become additions; 
the analogous distinction between two different subtractive 
and no less than four different multiplicative operations; 
and the use of naive cut-and-paste geometry in procedures 
which are their own immediate justification. Other features, 
however, single out the problem of “the four sides and the 
area” as a remarkable exception.

If by Q we designate the quadratic area and by s the 
corresponding side {Qi and 5̂ , i =  1 ,2 , . . .  when several 
squares are involved); by 45 “the four” sides of a square); if 
□ (a) stands for the area of the square on the line segment 
a and n (a , b) for that of the rectangle “held” by a and 6, 
the tablet contains the following problems (n stands for 
n-60^):

1. Q + 5 = 45'
2 . Q - s  = 14'30

3. Q -^ Q - \ -^ s  = 20'
Q - l Q - \ - s  = 4'46°40'

5. Q +  5 +  ^5 =  55'
6. Q + | 5  =  35'

7. 11Q +  75 =  6°15'

8. Q 1 + Q 2 = 21'40", 5i +  52 =  50' (reconstructed)

9. Qi +  C?2 =  21'40", 52 =  51 +  10'
10.  Q i + Q 2  =  2 1 °1 5 ', 5 2 = 5 1 - 1 5 1

11. Qi +  Q2 = 28°15', 52 =  5i +  ^5i

12. Qi +  Q2 =  21'40", n ( 5 i , 52) =  10'
13. Q i + Q 2  =  28'20", 52 =  ^51

14. Qi +  C?2 =  25'25", 52 =  §51 +  5'

15. Q 1 +Q 2 + Q 3 +Q 4 = 27'5", (52, 53, 54) = i l l  l ) s i
16. Q -  I 5 =  5'

17. Q i + Q 2 + Qs = 10'12°45', 52 =  ^5i,  53 =  ^52

18. Qi +  Q2 +  Qs — 23'20", 52 =  5i +10', 53 =  52 +10'
19. Qi +  Q2 +  0{s i  -  52) =  23'20", 51 +  52 =  50'
20. [missing]
21. [missing]
22. [missing]

23. 4S + Q = 41'40"
24. Qi  +  Q2 +  Qs — 29'10", 52 =  |5 i  +  5', 53 =  ^52 +  

2'30"

We observe that No. 23 is the only problem referring 
to “the four” sides of a square. It is also the only prob­
lem mentioning the sides before the area. It is certainly not 
the only normalized mixed second-degree problem deal­
ing with a single square, but all the others refer to a gen­
eral method (in semi-modem terms: halving the number of 
sides, squaring this half, etc.). In geometric terms, a sides 
are expressed as n (a , 5); this rectangle is bisected, and the 
total area Q +  2 n ( ^ a ,  5) is transformed into a gnomon 
which is then completed; etc.—see Figure 2. The proce­
dure of No. 23, on the other hand, depends critically on 
the number 4; already at this point we may observe that 
this use of an amazing and elegant but non-generalizable 
solution makes the problem look more like a riddle than 
like a normal piece of mathematics (Babylonian or mod­
em); so does, in fact, the presence of precisely th o se  fo u r  

sides which really belong to the square, instead of an arbi­
trary (and thus virtually general) multiple.

Other differences are no less striking. All remaining 
problems tell that they deal with squares by using the term 
which at one time designates the quadratic configuration 
and the length of the side; No. 23 is alone in stating at 
first that it deals with “a surface” or (probably) “a field.” 
It is also alone in using the term translated here as “front” 
ip u tu m ), an Akkadian term corresponding to Sumerian sag, 
the “width” of a rectangle. In normal algebraic problems the 
Sumerian term is compulsory; the use of a word belonging
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FIGURE 2
The “normal” procedure of BM 13901 for the solution of 
Q as = C.

to the spoken vocabulary of surveyors indicates that we are 
supposed to think of a real piece of land.

Even the solution is uncommon. Other problems of the 
tablet dealing with a single square have the side equal to 
30' (or 30), except for one case of 20'. These are indeed the 
standard values of square sides in Old Babylonian algebra 
problems, which may have to do with the roundness of 
these numbers in the sexagesimal place value notation used 
in mathematics teaching (30' =  ^, 20' =  All other 
cases where 10' is found are caused by the use of other 
favorites (ratios 4 and 7, differences 10' and 5'). Only (23) 
(at least among those problems which are conserved) is 
constructed from the side 10' as a deliberate choice. And 
only No. 23 tells the unit of the result, as if it were to be 
entered into a cadastral or similar document (cf. note 6).

The final puzzling feature does not concern the prob­
lem itself but its place: Apart from No. 16 (which can be 
suspected of having been displaced), problems of the type 
aQ  ±  (3s = C  occur in the beginning of the tablet, and 
the neighbours of No. 23 are considerably more complex. 
It seems as if the difference in method as reflected in the 
contrast between Figure 1 and Figure 2 was understood as 
a difference between mathematical genres.

II. The Proofs of al-jabr

No other Babylonian mathematical tablet contains a prob­
lem involving “the four” sides of a square or making use of

the peculiar method of Figure 1. In order to find parallels 
we have to make a jump to the early ninth century CE.

This was the moment when the Khalif al-Ma’mun 
asked al-KhwarizmI to put together a treatise cover­
ing those parts of the field al-jabr wal-muqabalah that 
were either “brilliant” (latl f) or practically useful.'^ Al- 
Khwarizml is thus not to be considered the inventor of al- 
jabr (Latinized as algebra), and, as we can read in a treatise 
by the slightly later Thabit ibn Qurrah®, it was practiced 
by a group of ''al-jabr people,” evidently some kind of pro­
fessional calculators. Yet within another generation or two, 
Abu Kamil would regard it as al-Khwarizml’s discipline— 
and al-KhwarizmI appears indeed (together with his con­
temporary ibn Turk, from whose work only a fragment is 
extant) to have reshaped the discipline, in particular the 
treatment of second-degree problems, which was its core.^

The problem which we translate as +  lOx =  39 
would be formulated as follows by the al-jabr people: A 
treasure together with 10 roots equals 39 dirhems. Funda­
mentally, the problem thus tells that an unknown amount of 
money (the “treasure” or mal—more precisely “property”) 
together with 10 times its [square] root (jadr) equals 39 
dirhems (strictly speaking, the correct translation is hence 
y +  1 0 -^  =  39). They would find the root by an unex­
plained rule: You halve [the number of] roots (which gives 
5), multiply it by itself (25), add this to the dirhems (64), 
take the root (8), and subtract the half of the [number of] 
roots. Thus the root is 3, and the treasure is 9.

This rule is given by al-KhwarizmI and repeated by 
Thabit ibn Qurrah. It can safely be assumed to belong to 
the inherited lore of the group. Al-KhwarizmI’s most im­
portant innovation was to give a geometrical proof that the 
traditional rule (and the corresponding rules for the cases 
treasure and number equal roots and roots and number

g
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FIGURE 3
Al-Khwarizml’s second proof. From B. B. Hughes, “Gerard of 

Cremona’s Translation of al-Khwarizml’s Al-Jabr'" p. 238.
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Al-Khwarizmrs first proof. From B. B. Hughes, “Gerard of 

Cremona’s Translation of al-Khwarizml’s Al-Jabr/' p. 237.

equal treasure) was correct. As in the Greek texts trans­
lated by al-Khwarizmrs colleagues at the Baghdad court, 
points and areas are labelled by letters in these proofs. In 
essence, however, they differ from the cut-and-paste proofs 
which we have encountered above only by being more pre­
cisely argued and hence less naive.

For the case the treasure together with 10 roots equals 
39 dirhems, two different proofs are given. The second cor­
responds directly to the rule, and is made on a diagram 
similar to Figure 2 (see Figure 3, which renders Gherardo 
of Cremona’s translation). The first corresponds to a pro­
cedure that differs from the one whose correctness is to be 
proved: 10 is divided by 4 (2^), squared (6 ^), multiplied 
by 4 (25), and added to 39. The diagram (see Figure 4) 
corresponds to that of Figure 1. There is no reason within 
al-Khwarizml’s text to bring a diagram so obviously at 
odds with what is to be proved—elsewhere, he confesses 
no particular infatuation with symmetry. If the diagram is 
there, it must be because it comes first to his mind, or be­
cause he expects it to come first to the reader’s mind. It 
must hence be supposed to have been familiar either to al- 
Khw^zm l or to his “model reader”-not from the al-jabr 
but from some other tradition. (It is indeed also more naive 
in style than the following proofs.)

III. Abn Bakr’s ^^mensuration algebra’’

This conjecture is confirmed by another treatise, a Liber 
^ensurationum written by one unidentified Abu Bakr. Ac­
cording to terminological criteria the work would be grossly 
contemporary with al-Khwarizmi’s.^^ No manuscript of the 
Arabic text is known, but a careful Latin translation was 
made by Gherardo of Cremona. Moreover, as we shall

see, Leonardo Fibonacci has used the work in his Pratica 
geometrie.

Formally, the work deals with practical geometry, and 
some of it really does. Thus, in the beginning of the first 
chapter it tells how, given the side of a square, the area and 
the diagonal can be calculated. Then, however, Abu Bakr 
goes on with “brilliant” problems of no or scarce practical 
interest and mostly asking for some kind of algebraic treat­
ment; all in all, the initial chapter (on squares) contains the 
following problems:

1 . s -= 10 : Q?
2. s -= 10 : d?
3. s + Q == 110 : s?
4. 4S + Q =  140: s„?
5. Q ~ s == 90: s?
6. Q - ! =  60: s„?
7. 4 S _  2 

5 ■Q: s„?
8. 4S = Q :5„?
9. 4S - Q =  3: s„? (Both solutions are given.)

10. d--= \/200; s?
11. d--= V 200; Q?
12. 4 S +  Q =  60: s„?
13. Q - 3 s =  18: s?
14. 4S _  3 

-  8 • Q:
15. Q /d  = 7 i : s „ ?
16. d -- S =■ 4: s?

17. d - - s =: 5 (No question, refers to the previous case.)
18. d--= Su +  4: s? (No reference is made to No. 16.)
19. Q /d  = 7i^: 5?, d?

Here, Q again denotes the area and s the side of the square, 
d is the diagonal, 45 stands for “[the sum of] its four sides” 
(or merely “its sides,” meaning the same), and Su for “each 
of its sides.” (Below, A shall be used about the area of a 
rectangle, and £i and - £ 2  about its sides.) The next chap­
ters (rectangles regarded as “quadrates longer on one side,” 
and rhombi) are similarly weighted toward algebraic prob­
lems; only then come chapters dominated by genuine ge­
ometrical calculation (and clearly related to the Alexan- 
drian/Heronian tradition). In order to possess a name for 
this particular kind of quasi-algebra I shall speak about 
“mensuration algebra”—dropping again the quotes in the 
following for stylistic reasons, even though the objections 
to this characterization of the technique as algebra tout
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court are even stronger than in the case of the scribe school 
discipline (cf. note 22).

Returning to the chapter on the square, we observe, 
first, that “the four sides and the area” turns up as No.
4, and again with a different numerical parameter as No. 
12—the sides being once more mentioned first (in the Liber 
mensurationum this is the common usage); second, that 
all problems involving sides except No. 13 deal with the 
side or the four sides; later on, the sides of rectangles also 
invariable turn up in geometrically meaningful company— 
the shorter or the longer side alone, these two together, or 
all four together (similarly, also the diagonals of rhombi); 
third, that the standard square has a side equal to 10, the 
only rcnl exceptions being Nos. 8-9 and Nos. 12-13.^^ 

Ahu Bakr solves many of the quasi-algebraic problems 
in whai 1 > regards as two different ways. One of these 
receives no special label and can thus be identified as a 
standard method, the method habitually belonging with the 
tradition of mensuration algebra as he knew it. The other is 
al-Jabr {aliabra in Gherardo’s translation). A literal trans­
lation of Nos. 3, 4, and 6 will serve as illustration:

3. And if he [a “somebody” presented in No.
1] has said to you: I have aggregated the side and 
the area, and what resulted was 110. How much 
is then each side?

The working in this will be that you take 
the half of the side as the half and multiply it by 
itself, and one fourth results; this then add to 110, 
and it will be 110 |, whose root you then take, 
which is 10^, from which you subtract the half, 
and 10 remain which is the side. Understand!

There is also another way for this accord­
ing to al-jabr, which is that you posit the side 
as a thing and multiply it by itself, and what re­
sults will be the treasure which will be the area.
This you thus add to the side according to what 
you have posited, and what results will be a trea­
sure and a thing which equal 110. Do thus what 
you were told above in al-jabr, which is that you 
halve the thing and multiply it by itself, and what 
results you add to 110, and you take the root of 
the sum, and subtract from it the half of the root. 
Actually, what remains will be the side.

4. And if he has said: I have aggregated 
its four sides and its area, and what resulted was 
140, then how much is each side?

The working in this will be that you halve 
the sides which will be two, thus multiply this by 
itself and 4 results, which you add to 1 < 40 and 
what results will be 1 > 44, whose root you take

which is 12, from which you subtract the half of
4, what thus remains is the side which is 10.

6. And if he has said: I subtracted its sides 
from its area and 60 have remained, how much 
thus is each side?

In this the working will be that you halve the 
sides which will be two. This you thus multiply 
by itself and add it to 60, and take the root of 
the sum which is 8, to this you thus add half 
the number of sides, and what results will be 10 
which is the side.

But its working according al-jabr is that you 
posit the side as a thing, which you multiply by 
itself, and a treasure results which is the area. 
From this then subtract its four sides, which are
4 things; thus remains a treasure minus 4 things 
which equals 60, restore thus and oppose, that is 
that you restore the treasure by the 4 things that 
were subtracted, and join them to 60, and you 
will thus have a treasure which equals 4 things 
and 4 dragmas. Do thus what you were told above 
in the sixth question [of al-jabr], that is that you 
halve the roots and multiply them by themselves 
and join them to the number and take its root, 
and what results will be that which is 8. To this 
you then join the half and 10 results, which will 
be the side.
This piece of text calls for a number of commentaries. 

First we observe that the numerical steps of the basic and 
the al-jabr methods coincide (which is actually noticed by 
Abu Bakr, as can be seen by his identification “that which 
is 8” in No. 6). The difference between the two methods 
must thus depend on something else (even though, in cer­
tain other problems, the two also differ numerically).

Al-jabr is evidently the technique explained by al- 
Khwarizml, and Abu Bakr’s treatise on mensuration must 
have been produced as a companion piece to an explana­
tion of al-jabr—though not to al-Khwarizml’s treatise but 
to something of more archaic style. This appears from cer­
tain terminological peculiarities: more precisely, from the 
use of the terms “restoration” (Arabic al-jabr) and “oppo­
sition” (Arabic al-muqabalah), precisely the ones that had 
given the technique its name.

Al-KhwarizmI uses “restoration” exclusively about 
the elimination of a subtractive term, in the way it is em­
ployed in Abu Bakr’s No. 6; the elimination of a coefficient 
by division is termed differently, without distinction be­
tween coefficients larger than and smaller than 1.^  ̂ In Abu 
Bakr’s al-jabr expositions, “a treasure minus 4 things” is 
“restored” as “one treasure” by the addition of 4 things, and
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“one fourth of a treasure” is “restored” through the muhi- 
plication by 4 (in No. 55). In Abu Bakr’s usage (which is 
confirmed in the standard treatment of No. 4, and again in 
the genuine geometrical part of the treatise, in Nos. 67, 100, 
and 102), restoration thus repairs any deficiency, whether 
subtractive or partitive. (On one occasion it even repairs an 
excess by subtracting it, viz in No. 55.)

“Opposition” as used by al-KhwarizmI is the con­
verse of his restoration, the subtraction of an addend on 
both sides of an equation. In the Liber memurationum, the 
meaning once again is less specific and mostly different. 
Where al-KhwarizmI has the recurrent phrase “restore, and 
add” (the restoration being the elimination of a subtractive 
term - t  on one side of the equation, and the addition the 
concomitant addition of an additive term t on the other), 
Abu Bakr has “restore, and oppose” (Nos. 5, 6, 9, etc.);^^ 
in one place (No. 22), the term covers an al-KhwarizmI an 
opposition; and repeatedly, when an entity A  is “opposed 
with” or “by” another entity B, the meaning is that the 
equation A = B  \s formed (most clearly in Nos. 41, 48, 
49, and 50, but also in Nos. 7, 24, 25, 31, and elsewhere). 
Summed up in one concept, “opposition” means “putting 
on the opposite side,” either in an already existing equation 
or by establishing an equation.^®

Abu Bakr is not alone in not complying with the usage 
which was canonized thanks to the fame of al-Khwmzml’s 
treatise. Even al-Karajl, though he defines the terms as does 
al-KhwmzmI, uses “opposition” in Abu Bakr’s way.^^ 
There can be little doubt that Abu Bakr’s loose parlance is 
original and al-Khwarizml’s stricter usage an innovation, in 
all probability an intentional and premeditated innovation: 
the natural trend for the terminology of a mathematical cul­
ture undergoing a process of dynamic maturation (as that 
of ninth to tenth-century Islam) is to increase its precision 
and stringency, not to abandon its accuracy. Abu Bakr’s 
al-Jabr is thus pre-al-Khwarizml an, if not necessarily by 
date then at least in substance and style (but, given the 
triumph of al-Khwarizml’s Algebra, it cannot then be too 
much later).

So much for the al-jabr method. Returning to the stan­
dard method, we remember that it did not (or did not al­
ways) differ from al-jabr in its numerical steps. Nonethe­
less it was regarded as something different by Abu Bakr. 
Why?

A first observation to make is the care with which the 
al-jabar sections explain that the treasure represents the 
area of the square, and the root (or “the thing,” which 
is used in the same sense until standard equations are 
derived)^® its side. The implication is that treasure and 
root/thing are not in themselves understood geometrically

but as numbers. The basic method may then differ from 
al-jabar precisely by referring directly to the geometric 
method.

This conjecture is confirmed by several further obser­
vations. One concerns the word “understand” (intellige in 
the Latin text), whose occurrences are scattered throughout 
the work, in somewhat varying contexts. On two occasions, 
the word stands as an exhortation to penetrate a deliber­
ately opaque and superfluously intricate computation and 
to grasp why it works after all (Nos. 50 and 74). In a num­
ber of questions concerned with genuine geometrical com­
putation it asks the disciple to look at or understand from 
actually appearing diagrams why the computation is correct 
(a square with diagonal in No. 2; an isosceles trapezium 
in No. 78; etc.). This recalls another Gherardian transla­
tion from an Arabic text, according to which the Indians 
“possess no demonstration [for a particular construction] 
but only the device intellige ergo''—where indeed Indian 
geometrical texts have the phrase nyasa, “one draws” (etc.) 
followed by a diagram when they want to illustrate a rule, 
algorithm or algebraic identity which has just been stated. 
Finally, the word is used repeatedly as in No. 3, that is, after 
the presentation the standard solution (but not the al-jabar 
solution) of a quasi-algebraic problem. Even though no di­
agrams are given on these occasions in Gherardo’s version, 
the parallel to the real geometric problems suggest that here 
too the exhortation may have referred originally to under­
standing through a diagram—in No. 3 to a diagram similar 
to Figure 2.

Significantly, some of the solutions which carry the 
“understand” are termed in a way which shows that the 
original constitutive geometrical entities are thought of all 
the way through. One instance is No. 43, dealing with a 
rectangle (a “quadrate longer on one side”) and indeed a 
rectangular version of “the four sides and the area”:

If indeed he has said to you: I have aggregated 
its four sides and the area, and what resulted was 
76; and one side exceeds the other by two. How 
much thus is each side?

The way to find this will be that you mul­
tiply the increase of one side over the other, al­
ways [that is, whatever the actual excess] by 2, 
and what results will be 4. Therefore subtract this 
from 76, and 72 will remain. Next aggregate the 
number of sides of the quadrate, which is 4, and 
join it to the increase of one side over the other, 
and what results will be 6. Thus take its half, 
which is 3, and multiply this by itself, and 9 re­
sults, which you join to the 72, and 81 results.
Then take its root, which is 9, and subtract from
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it the half of 6, which is 3, and the shorter side
will remain, which is 6. To this then add 2, and
the longer side will be 8. Understand.

The way according to al-jabar, however, ....

The numerical steps can be explained in several ways. Al­
gebraically, we may call the width 2;, and the length thus 
z 2; proceeding mechanically from here we get Abu 
Bakr’s al-jabar procedure. Or we may call the two sides x  
and y {x = y-\-2 \  and observe that the area plus the sides 
is then X ' y ^ 2 x ^ 2 y = X 'y ^ A y - \- 2 ' 2  = {x-\-A)'y-\-A\ 
if X  =  a: +  4, we therefore have X  • y = 76 -  4 = 72, 
X  =  2/ +  (2 +  4) = y 6 . The problem has thus been 
reduced to finding the sides of a rectangle whose area is 
76 -  4 =  72 (4 being 2 the excess times invariably 2), 
and whose length exceeds the width by 2 +  4 (4 being 
the number of sides). This interpretation makes sense not 
only of the numbers but also of most of the words of the 
text—including the use of the identity-conserving “joining” 
of 4 to the excess, since the result is still an excess. (As 
the Old Babylonian texts, Abu Bakr distinguishes between 
additions, even if less sharply.)

Still, some formulations remain unexplained, and x's  
and y's are anyhow anachronistic. The second interpre­
tation therefore has to be reinterpreted itself in order to 
become relevant. This is done in Figure 5: Initially, the 
sides are thought of as provided with the standard width 1 
(the “projection” of our Old Babylonian texts).^^ The ex­
cesses are cut off, after which the sides are “aggregated,” 
and collectively “joined” to the excess. The rest goes as 
in Figure 2: The excess of the rectangle over the square is 
bisected, and a gnomon is formed, to which the quadratic 
complement is “joined,” etc.

That the text refers to something more than mere 
numbers is confirmed by the recurrent phrase “what re­
sults/remains will be . . .  .” The al-jabr sections (where we 
have the advantage of knowing what goes on) demonstrate 
that the phrase is no mere stylistic whim. Here the phrase 
also turns up time and again-but never in places where 
“what results” is nothing but the outcome of a computa­
tion. Instead of “what remains will be 72,” such passages 
simply tell that “72 results.” Invariably, “what results” is 
either a composite algebraic expression or equation, or a 
something which is identified with something different— 
as in the end of No. 3, where the numerical outcome of the 
algorithm is told to be the side, and again toward the end 
of No. 6.

Even within the descriptions of the standard method, 
we therefore have to read the phrase “what results will 
be a” as “the thing which results will have the numerical 
value a.” But since it is never explained (as done in the

ID -

FIGURE 5
Liber mensurationum, the procedure of No. 43.

al-jabar sections) that something different represents the 
geometrical entities that the problems deal with, then the 
“things” whose existence is presupposed must be geomet­
rical entities, derived by means of geometrical operations 
from the entities referred to in the statement. In No. 43, “the 
thing that is 4” will hence be the piece which is removed 
from the two rectangles representing the lengths-that is, the 
small square that is eliminated in the second step in Figure 
5; and “the thing that is 6” will be the excess of the new 
length over the width.

No. 38—a kind of rectangular counterpart of No. 1— 
may be even more elucidating, because the solution builds 
on a fallacy which turns out to make excellent sense in a 
diagram:

If indeed he has said to you: I have aggregated its 
longer and shorter sides and the area, and what 
resulted was 62; and the longer side exceeds the 
shorter by two. How much, then, is each side?

The way to find this will be that you subtract
2 from 62, and 60 remains, then add 2 to the half 
of the number of sides, and 4 results. Join this to
60, and 64 results. Thus take its root, which is 8.
This, in fact, is the longer side. And if you want 
the shorter, subtract 2 from 8, and 6 remains, 
which is the shorter side.

Figure 6 shows what goes on: We start as before, but this 
time, taking advantage of the coincidence between the num­
ber of sides involved and the excess (and thereby depriv-
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FIGURE 6
Liber memurationum, the procedure of No. 38.

ing the solution of any general validity), we produce the 
gnomon by moving the width to a position along the length 
and splitting off the excess from the length. The gnomon 
is completed as a square by fitting in the loose end of 
the length together with another piece (with width 1 and 
length) equal to “the half of the number of sides” (that is, 
equal to the number of sides actually involved). The area 
of the completed square being 64, its side (which equals 
the length according to the diagram) is 8.

The correct solution of No. 43 might in principle have 
been obtained by means other than the use of a diagram 
(there are always many ways to obtain a correct result), 
even though it seems difficult to explain the precise phras­
ing without the geometrical cut-and-paste interpretation. 
The lapses of No. 38, on the other hand, can have re­
sulted meaningfully only from a representation where it 
goes without saying, firstly that the excess of length over 
width equals the number of sides involved, and secondly

that the two together contain the completing square (the 
number of sides translated into ‘projections”)—that is, in 
a geometrical representation drawn or imagined in more 
or less correct proportions. All in all we may confidently 
conclude that Abu Bakr’s standard method was based on 
geometrical operations—and that at least the method used 
in the problems translated above was in naive cut-and- 
paste style.^^ Moreover, the geometrical operations concern 
the very entities which define the problems^^—and these, 
as pointed out in passing above, are always geometrically 
meaningful. They do not involve entities like aQ  or (is (or 
7^1 - 6 ^2 ) but instead: the single area; the side, both sides, 
or all four sides; the two diagonals of a rhombus; etc.

The geometrical technique of Abu Bakr’s mensura­
tion algebra recalls what one encounters in Old Babylonian 
texts, and “the four sides and the area” certainly recalls BM 
13901, No. 23. No surviving Babylonian problem possesses 
precisely the structure of Abu Bakr’s Nos. 38 and 43, but 
one text (also belonging to the early phase of the develop­
ment of Old Babylonian algebra) contains a close parallel, 
which happens also to make use of a trick for its solution 
which corresponds to a change of variable: AO 8862 No.
1.^  ̂ Here, in symbolic translation, X ' y ^ { y  -  x) = 3'3°, 
y -\- X = 21\hy  addition, x • y 2y = {x -\-2) • y = 3'30° 
or X - y  = 3'30°, y - \-X  = 27 + 2 = 29.

Several other similarities between the Old Babylonian 
corpus and the standard part of Abu Bakr’s quasi-algebraic 
problems can be enumerated: in particular, certain shared 
characteristic methods; furthermore, a highly systematic 
and rather intricate shift between past and present tense 
and between the first, second, and third grammatical per­
son (there is also one significant though only partial di­
vergence in this domain, which we shall discuss below). 
We may thus safely conclude that the two kinds of quasi­
algebra are somehow connected. How they are connected 
is a question to which we shall return.

IV. Twelfth- and thirteenth-century evidence

First, however, we shall look at two later authors who still 
draw on the same tradition: Abraham Bar Hiyya—better 
known as Savasorda, from a twisted pronunciation of his 
court title—and Leonardo Fibonacci.

Savasorda’s early twelflh-century Hibbur ha-mesihah 
we'tisboret {Collection on Mensuration and Partition), 
translated into Latin by Plato of Tivoli as Liber embadorum 
{Book o f  Areas)^"^, has its main emphasis on genuine geo­
metrical computation, in clear contrast to Abu Bakr’s work. 
Equally in contrast to Abu Bakr, Savasorda also draws on 
the Elements, first in the initial chapter, where he copies
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the definitions from Elements I and VII and a number of 
theorems, and later in the work in a number of proofs. At 
one point (chapter 2, part 1, §7), however, he tells that, 
before going on with triangles and with those quadrangles 
whose treatment presuppose triangulation, he will present 
some problems “so that by solving them, with God’s assis­
tance you may prove yourself a keen and swift enquirer.” 
First come some problems concerning squares:

§8. 5 =  10, dl
§9. d = ^ / ^ \  s i

§10. Q -  45 =  21, Q? 5?
§11. Q +  4 S = 77,Q7 s7
§12. 4 S -  Q = 3, (Both solutions are given).

Without doubt Savasorda has borrowed this sequence of 
problems, and no doubt it is related to what we encoun­
tered in the Liber mensurationum. It is uncertain, however, 
and rather implausible that he used Abu Bakr’s manual di­
rectly. If he had done so and then made the present meagre 
selection, changing fiirthermore the order in §§9-11 and the 
value of the unknown in §§10-11, it does not seem likely 
that he would keep §12 unchanged. (Comparison between 
the treatments of rectangles in the two treatises supports 
this conclusion.) That the side of §§10-11 is precisely 7 is 
also in itself noteworthy, as possibly related to the crude 
approximation that was behind Abu Bakr’s Nos. 16 and 18 
(side 10 and diagonal 14).

Abu Bakr’s standard method appeared to be a geo­
metrical cut-and-paste procedure referring to geometrical 
diagrams, but at least Gherardo’s translation brings no di­
agrams beyond those that show the square, the rectangle, 
the rhombus (etc.) with which the problems deal. Sava­
sorda’s manual does contain diagrams demonstrating the 
correctness of his solutions. (On the other hand, Savasorda 
provides no al-jabr solutions.)^^ Formally, however, these 
refer to the Euclidean theorems which are reported in the 
introduction. It is therefore possible that they have been 
associated afresh with the traditional problems by some 
editor (Savasorda or a predecessor) with Euclidean school­
ing or familiar with Thabit ibn Qurrah’s Verification o f  the 
Problems o f Algebra through Geometrical Demonstrations 
(which proves the correctness of the standard algorithms 
of “the al-jabr people” for the solution of mixed second- 
degree problems by means of Elements II.5-6 in a way 
which is very similar to Savasorda’s). It could also be, 
however, that this editor simply reformulated a number of 
traditional and still current naive geometrical procedures 
in Euclidean style-this would be quite easy, since the Eu­
clidean theorems in question look precisely like “critical” 
recastings of a naive cut-and-paste inheritance. (Compare,
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FIGURE 7
The naive diagram showing that ± 2 A  =  ±  in a 
rectangle

for instance. Elements II.6 with Figure 2; the argument is 
specified below, see p. ???.) In other words, it is possible 
but not sure that Savasorda’s diagrams descend directly 
from the procedures traditionally connected with his quasi- 
algebraic problems.^®

Leonardo Fibonacci wrote his Pratica geometric (see 
note 4) in 1220, and certainly drew on many sources. As 
Maximilian Curtze pointed out in the critical notes to the 
Liber embadorum, Savasorda is one of them. The whole 
structure of the work indicates that Leonardo has read the 
Liber embadorum. Quite a few of the shared features, how­
ever, derive not from direct borrowing but from one or more 
shared sources.

This regards precisely the group of problems which 
concerns us here. As pointed out by Curtze, Savasorda’s 
§§8-12 recur in the Pratica. Their order, however, has been 
changed, as have some of the parameters (+ n  counts lines 
from the top, — n from the bottom of the page).

p. 58+®. s = 10, d?
p. 58-^. d = y/200-, 5?
p. 59+^ Q + 4S = 140, Q? s?

p. 59-1®. Q ~ 4S = 77, Q? s?
p. 60+10. 4S- Q = 3, Su? (Both solutions are given).

The formulations, fiirthermore, are wholly different from 
Savasorda’s, even though at other places (for example, 
when Abu Bakr’s No. 38 is reproduced—cf. below) the 
phrases of a source are taken over without any change 
beyond grammatical polishing. Most decisive, however, is 
that several of Leonardo’s deviations from Savasorda agree 
with the “background tradition” as we know it from Abu 
Bakr. Like the latter in Gherardo’s translation, Leonardo 
refers to quatuor eius latera, while Savasorda takes away
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omnium suorum laterum in unam summan collectum\ and, 
like Abu Bakr, Leonardo’s side in the problem Q-\~4 S = A  
is 10.2"

There can be no doubt that Leonardo had Gherardo’s 
version of the Liber mensurationum (in full or in excerpt) 
on his desk while writing parts of the Pratica A strik­
ing proof is provided by the problem dealt with from p. 
66"^^ onward, which coincides with Abu Bakr’s No. 38 
(see above, p. ???):^®

Again, the two sides with the expanse amount 
to 62; and the larger side exceeds the smaller by 
two. How much then is each single side?

The way to find this will be that you subtract 
2 from 62, and 60 remain, then add 2 to the half 
of the sides, and 4 result. Join this to 60, and
64 result. Thus take their root, which is 8. That, 
in fact, is the longer side. And if you want the 
shorter, subtract 2 from 8, and 6 remain, that is 
the shorter side. For example: posit the smaller 
side as a thing, then the larger will be a thing 
and two dragmas. From the multiplication of this 
shorter side by the longer results the expanse. 
Therefore multiply the thing, that is the smaller 
side, by the thing and by two dragmas, and you 
will have a treasure and two roots as the expanse; 
which, if you add to them the two sides, namely
2 roots and 2 dragmas, will be a treasure and 4 
roots and 2 dragmas, which equal 62 dragmas. 
Remove 2 dragmas in each place, and a treasure 
and 4 roots remain, which equal 60, and so on.

We see that the statement differs from Abu Bakr’s—among 
other things, Leonardo speaks here about the “larger” and 
“smaller” side, where Abu Bakr/Gherardo has “longer” and 
“shorter.” In the end, Leonardo gives a solution by means of 
al-jabr (which he seems to regard as an explanation, even 
though completion of the al-jabr procedure would highlight 
the fallacy),^^ where Abu Bakr has none in this particular 
problem. In the description of the standard procedure, how­
ever, all he has done is to change the grammatical number, 
considering “60” etc. as plurals and not singulars.

In other places, Leonardo has geometrical proofs, 
some of them similar to those of Savasorda. We may look 
at Leonardo’s treatment of “the four sides and the area” (p. 
59+5):

And if the surface and its four sides make 140, 
and you want to separate the sides from the sur­
face. Let a quadrate ezit be put together, and 
the rectangular surface ae added to it. And let 
ai prolong the straight line it, and be prolong 
the straight line ez\ and let each of the straight

FIGURE 8
Leonardo’s diagram for “the area and its four sides make 140.”

lines be and ai be 4 because of the number of 
the sides of the quadrate; because the surface ae 
equals four sides of the quadrate et, since the 
side ei of the latter is one of the sides of the 
surface ae; and the surface et contains indeed 
the expanse of the quadrate zi, and [not] its four 
sides. Therefore the surface za  is 140; and that 
is what we have said, namely that the treasure 
with four roots equal 140; and the treasure is the 
quadrate et, and its four roots are the surface ae. 
Divide indeed the straight line ai in two equals 
at the point g\ and because the line ti is added 
to the line ai, then the rectangular surface it on 
at with the square on the line gi will be equal 
to the quadrate on the line gt. But the surface it 
on at is as the surface zt on at, since it is equal 
to tz. Thus the surface zt on at with the square 
on the line gi equals the square on the line gt. 
But zt on at is the surface za, which is 140. 
Which, when the square on the line gi, namely
4, is added to them, give 144 as the quadrate on 
the line gt\ therefore gt is 12, namely the root 
of 144. Therefore, if gi, namely 2, are dropped 
from gt, remains it as 10, which is the side of 
the quadrate et\ whose expanse, namely 100, if its 
four sides are added, which are 40, will be 140, 
as claimed. And like this is done in all questions 
in which a number equals one square and roots, 
namely that to this number is added the square 
of the half of the roots, and the root of the sum 
is found; from which the half of the posited roots 
is removed, and the root of the treasure which is 
asked for will remain; which when multiplied by 
itself makes the treasure. For example: 133 drag­
mas equal one treasure and twelve roots. There­
fore, if we add the square on the half of the roots, 
namely 36, to 133, they will make 169; when 6,



56 VITA MATHEMATICA

namely the half of the roots, is subtracted from 
its root, namely from 13, 7 will remain as root 
of the treasure asked for; and the treasure will be
49.

The geometrical proof is similar to Savasorda’s (and 
Thabit’s), and the same observations could be made. The 
treatment of the problem “the two sides with the expanse 
amount to 62 . . . ” (above, p. ???) supports the conclusion 
that Leonardo has no direct access to the naive procedures 
which had still been known to al-KhwarizmI and Abu 
Bakr. It is also characteristic that Leonardo gives only an 
al-jabr treatment of the “four sides and rectangular area” 
(Abu Bakr’s No 43, where the naive procedures were most 
clearly reflected in the phrasing—see above, p. ???).

This would go by itself if Leonardo’s only windows 
on the tradition were Savasorda and Abu Bakr/Gherardo. 
Plausibly, however, he has known also at least one other 
version of Abu Bakr’s manual or a close relative of this 
work. Gherardo, indeed, had worked on a defective manu­
script, as revealed by certain corrupt passages and by refer­
ences backward to problems which in the actual manuscript 
come later. Among the seemingly corrupt passages is the 
solution of problem No. 14, “I have aggregated the four 
sides [of a square], and they are 3/8 of its area.” At the 
corresponding place, Leonardo has “the four sides and 3/8 
of the expanse equal 77^.” It is unlikely that Leonardo 
(who was a fairly systematic writer) should have produced 
this problem in order to repair the defect in Gherardo’s 
version, since the problem is preceded by 45 =  and 
followed by 45 =  Q and 45 =  2Q. It is also remarkable 
that Leonardo this time mentions the sides before the area, 
as done by Abu Bakr and in our Old Babylonian tablet. 
In the preceding treatment of the problem “sides plus area 
equal 140,” Leonardo has indeed normalized the order of 
the members; there is certainly no reason to expect that he 
would innovate in this respect when repeating an inherited 
problem and return to the ancestral idiom when inserting a 
problem of his own making. The problem will hence have 
been borrowed, if not from a different version of the Liber 
memurationum, then from its closest kin.

Savasorda, Gherardo and Leonardo have thus been in 
touch with at least three different versions of the quasi- 
algebraic tradition to which the problem of “the four sides 
and the area” belongs. (As we shall see below, Pacioli 
seems to use material stemming from a fourth version.) All 
these versions, however, appear to have lost contact with 
the original naive-geometric techniques, replacing (or pos­
sibly recasting) those proofs which allowed that with cor­
responding propositions from the Elements II, and handing 
down those solutions which did not allow such Euclidiza-

tion (like Abu Bakr’s Nos. 38 and 43) without geometrical 
support (which explains why Leonardo gave up in front of 
No. 38, cf. above, note 29).^^

The transformation of the tradition between Abu 
Bakr’s and Leonardo’s time, and its gradual assimilation 
to an increasingly geometrized al-jabr tradition, are shown 
also by another feature. Abu Bakr, as we remember, took 
great care to distinguish the “standard procedure” from the 
al-jabr method, and to explain how “the treasure” of the 
latter represented the area of the square (etc.). Savasorda, 
as we saw, was even more respectful of the geometrical tra­
dition, and does not mention the al-jabr tradition (which 
would anyhow, one may presume, not have been be very 
informative for his intended public); his only algebraic the­
ory is borrowed from the Elements II. Leonardo, as we see, 
and, as it is made even more explicit in the beginning of 
the section on quadrilaterals (pp. 56f), has abolished the 
distinction completely. Where al-KhwarizmI tells number 
to fall into three classes, roots, treasures, and simple num­
bers without any reference to either^^ Leonardo tells the 
three natures of numbers and their fractions to be roots 
o f squares; squares; and simple numbers: this in spite of 
obvious al-KhwarizmI an inspiration for the passage in 
question (revealed by characteristic phrases borrowed from 
Gherardo’s translation of al-KhwarizmI).

Savasorda’s and Leonardo’s texts thus tell us two 
things: first, that the tradition carrying the problem about 
“the four sides and the area” was still present in their 
worid; second, that it had been reduced to a shadow; af­
ter having served al-Khwarizml’s coordination of al-jabr 
with geometry, and after centuries of coexistence with the 
Euclidization of applied geometry, it had no mathematical 
standing of its own, and it survived only as a collection 
of venerated problems. As Gherardo must somehow have 
tried to express when translating Abu Bakr’s al-jabr as 
aliabra, algebra had come to encompass much more than 
the purely numerical technique of the pre-al-Khwarizmlan 
dil-jabr people.

V. Reconstructing the process

In the closing section we shall consider the end of the 
disintegration process. Since, however, the forces at work 
in this phase differ from those which shaped the eariier 
development, it may be convenient to discuss first what we 
can learn about the prehistory of algebra by following the 
career of “the four sides and the area” and its cognates from 
the cradle through the High Middle Ages. This we shall do, 
on one hand by summing up and connecting observations



Heyrup: The Four Sides and the Area 57

which were already made above, on the other by drawing 
new conclusions.

The first question concerns precisely the cradle. Our 
earliest encounter with the tradition and the characteris­
tic problem embodying it was in an odd comer of an Old 
Babylonian mathematical scribe school text. Several fea­
tures of the formulation of the problem, however, hinted at 
real surveying practice—and our next encounter with the 
problem was in an Islamic handbook concerned with that 
very practice. Is it likely that a problem created within the 
tradition of scribe school algebra but dressed as a real prob­
lem for surveyors would be adopted by these together with 
a narrow selection of other problems and continued as a 
tradition of mensuration algebra, while the main body of 
Old Babylonian algebra would remain the exclusive prop­
erty of the scribe school and die with it? Or should we 
rather expect the scholar-scribes to be the debtors?

The question is a variant of a traditional problem of 
folklorists: are folktales gesunkenes Kulturgut, as the Ro­
manticists believed, or not? Are folktales the remnants of 
myths and high-level literature, or are myths created on the 
basis of folk tale motifs? In the final instance: is genuine 
culture produced by prophets, priests and scholars alone, 
and the low culture of other strata merely derivative, mis­
construed, and defective?

Several observations speak decisively against the hy­
pothesis of a scribe school descent, and in favour of an ori­
gin of the mensuration algebra among practical geometers. 
One of these is the length of the side of the Old Babylonian 
version of “the four sides and the area.” As in Abu Bakr’s 
and Leonardo’s corresponding problem, it is ten—but ten 
minutes. Now, 10 is an obvious choice in any culture us­
ing a decadic number system; 10', however, is not—neither 
a priori nor according to the Old Babylonian tablets. In­
deed, 10 in any order of sexagesimal magnitude (including 
10°) would be an untypical side length in any Old Baby­
lonian text. It is highly improbable (to say the least) that 
the queer problem should have been invented within the 
scribe school and been constructed around the anomalous 
value of the unknown side, and then taken over by peo­
ple who by accident could correct 10' (which they would 
see as 1/6) into the obvious value 10. The scribe school 
mathematician, however, if borrowing a problem with the 
parameter 10, could reasonably be expected to locate this 
number in his habitual order of magnitude, which in the 
tablet in question is that of minutes.

Another observation has to do with the topic and gen­
eral character of the problem. As already hinted at, the 
combination of the geometrically meaningful (all four sides 
of a square field) with the practically meaningless (which

practitioner ever knew the sum of the sides and the area 
without first knowing them separately?) gives the problem 
the character of a bizarre riddle. Such riddles, when mathe­
matical, are known as recreational problems. In pre-Modem 
times, they were transmitted within environments of math­
ematical practitioners, where they served the purpose told 
by Savasorda: “that by solving them, with God’s assistance 
you may prove yourself a keen and swift enquirer”; or, in 
another formulation taken from a Carolingian problem col­
lection (I quote the puzzle in full):

A paterfamilias had a distance from one house of 
his to another of 30 leagues, and a camel which 
was to carry from one of the houses to the other 
90 measures of grain in three turns. For each 
league, the camel would always eat 1 measure.
Tell me, whoever is worth anything, how many 
measures were left.^^

In other words, these problems—which according to their 
dress belong within the domain of the practitioners in ques­
tion (surveyors and caravan traders, respectively) but which 
are more complex or more bizarre than the problems solved 
in everyday practice—serve to train the mental agility and 
enhance the professional self-esteem of the members of the 
craft (whence the term “brillianf ’ used by al-Khwarizmi to 
characterize the useless second-degree part of al-jabr—see 
above, p. ???).^^1 Invariably, they have something stunning 
in their formulation: unless a clever trick is applied (an in­
termediate stop), the camel will eat exactly everything; in 
another widespread problem, 100 monetary units will buy 
exactly 100 animals; repeated doublings run to 30 or 64, 
because this fits the days of the month or the cases of a 
board game; etc.^^

The topic—the real sides of a real field; the strik­
ing parameter—exactly all four sides; and the solution 
by means of a doubly weird trick—quadripartition and 
quadratic completion: all three features indicate that “the 
four sides and the area” was hatched not in a scribe school 
but in a non-scholastic environment of practical geometers.

A third observation allows us to locate this environ­
ment tentatively in time and space. As stated above (p. 
???), Abu Bakr’s discourse is astonishingly close to what 
we find in Old Babylonian school texts. There is one ex­
ception to this rule, however. Abu Bakr always has a hypo­
thetical “somebody” posing the question (in the first person 
singular, past tense). Old Babylonian texts, instead, start 
directly with the question (as in BM 13901, No. 23), im­
plying that it is the teacher who asks. One group of texts, 
however, starts its problems with the familiar “if some­
body has asked.” These texts come from Tell Harmal and 
Tell Dhiba’i, both in the Kingdom of Esnunna, and be­
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long to the earliest eighteenth century Esnunna is an 
early focus for that Akkadian scribal culture which arose 
around the mid-Old Babylonian period: late nineteenth cen­
tury Esnunna produced the first law code in Akkadian, half 
a century in advance of the Codex Hammurapi. Since al­
gebra is an Akkadian genre with no identified Sumerian 
antecedent, Esnunna may thus be the location where the 
recreational lore of Akkadian-speaking practical geometers 
was adopted into the curriculum of the Akkadian scribal 
school.

An Akkadian origin fits the side of our square field. 
Akkadian, as Arabic (and as the likely intermediate carrier 
language of our tradition, Aramaic), is a Semitic language 
and has a decadic number system. It also fits the name 
“Akkadian method” given to the quadratic completion in 
a late Old Babylonian mathematical text; it agrees with 
the observation made by Robert Whiting that the prob­
lems contained in a school text from the Old Akkadian pe­
riod (the 22nd century B.C.) dealing with area measurement 
are so much facilitated by familiarity with the geometric- 
“algebraic” rule {R — r)^ = B? — 2Rr +  that this 
rule is likely to have been presupposed; and it matches 
the presence of a tablet with a bisected trapezium (another 
favorite problem following our tradition until Abu Bakr 
and Leonardo) in an Old Akkadian temple.^® It looks as if 
already the Old Akkadian scribe school had adopted part 
of the recreational lore of the Akkadian surveyors, but that 
the strictly utilitarian neo-Sumerian school (21st century 
B.C.) did not transmit it.̂ *̂

Since there is, anyhow, close affinity between the Old 
Babylonian scribe school algebra and the tradition of men­
suration algebra, it is reasonable to assume the former to 
have developed from the adoption of the latter under the fe­
cundating influence of the systematic spirit of the school. 
The quadratic completion, originally another weird trick 
comparable to the quadripartition and the intermediate stop, 
may have been the cornerstone on which the whole stupen­
dous edifice of Old Babylonian algebra was erected.

The overlap between the algebra of the scribe school 
and that of the Liber mensurationum (and other post- 
Babylonian sources) allows us to draw up a list of prob­
lems which can be ascribed with some confidence to the 
mensuration algebra of the early Old Babylonian epoch. 
Of course (sticking to the symbols introduced on p. ???), 
s -\- Q = a  and Q = (5 (we may even be confident 
that a  =  110, /3 =  140); probably also problems with dif­
ferences (area minus side(s), and side(s) minus area) and 
questions about the diagonal when the side is given, and 
vice versa. For rectangles, furthermore, A = a, i \ ± i 2 = /?; 
A ±  ^2 ) = OL, A  = a, d = (5 (this lat­

ter problem is found on the Tell Dhiba’i-tablet). Highly 
likely is also the presence of problems dealing with several 
squares, at least Q\ = a, si ±  S2 =  /? (a partial 
alternative, less plausible however, is the presence of the 
rectangle problems £i ±  £2 = ol, d = Rhombi and 
right triangles (both of which are used as pretexts for the 
formulation of quasi-algebraic problems in the Liber men­
surationum) seem to be beyond the horizon, as is anything 
involving non-right triangles.

Old Babylonian scribal algebra developed into a so­
phisticated discipline, but most of its higher achievements 
were lost when the Old Babylonian era was interrupted by 
conquest and social breakdown after 1600 B.C., at which 
occasion the scribe school also disappeared. The late Baby­
lonian period, in particular in the Seleucid era (from 300 
B.C. onwards), produced a certain revival of algebraic ac­
tivity, it is true; discontinuity in the use of Sumerian word 
signs demonstrate, however, that much of the transmission 
had taken place outside the scribal environment, and that 
a readoption of material fi-om the mensuration algebra tra­
dition occurred.

In the meantime, it appears that new problem types 
had been invented or imported into this tradition. The most 
systematic Seleucid treatment of second-degree problems is 
found on the tablet BM 34568.^^ All problems except two 
deal with rectangles, where various combinations of sides, 
diagonal and area are given.^^ With a single exception, 
the rectangle problems recur in the Liber mensurationum 
(at times with other parameters); moreover, the exception 
{^i D  and ^2 ^  d given) is not really one, since Abu 
Bakr’s No. 36 (^1 +  d and -  2̂ given) is reduced to the 
Seleucid problem and then solved in the same way.

Interestingly, the only rectangle problem dealing with 
a diagonal of whose presence in the early mensuration al­
gebra we are sure {viz A  = a, d = /3, found in the Tell 
Dhiba’i tablet) is absent fi-om the Seleucid anthology. Also 
interesting is one of the two problems in the tablet which 
does not consider rectangles. It deals with a reed leaning 
against a wall, and is equivalent to the rectangle problem 
d - £ i  = a, £2 = 0  (Abu Bakr’s No. 31). Nothing with the 
same mathematical substance is found in the Old Babylo­
nian corpus. The dress, on the other hand, is familiar, but 
originally it covered a problem translatable into the much 
more trivial d = a, = a -  (3.

On the whole, the Seleucid tablet thus looks like a 
listing of new problems; the reed problem may be meant 
to demonstrate how this fascinating new wine could be 
poured into an old cherished bottle, thereby lending new 
quality to both. In any case, and quite in contradiction to the
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traditional view, the tablet demonstrates the discontinuity of 
Babylonian mathematics in spite of apparent continuity.^^

Also at variance with widespread convictions, but the 
other way round, is the perspective we get on the core 
of Elements II if we correlate propositions 1 to 10 of the 
Euclidean work with what we have come to know about 
mensuration algebra.^^ Postponing for a moment proposi­
tions 1 to 3, the rest can be seen as quasi-Kantian critiques 
of the familiar procedures: Proposition 4 is used, e.g, by 
Leonardo when he finds the sum of the sides of a rectangle 
from the diagonal and the area, while Savasorda (proceed­
ing like the Tell Dhiba’i text) finds their difference via 
Proposition 7.^^ Proposition 6 explains the solution of all 
problems Q ± a s  = ^  (including “the four sides and the 
square”) and A = a, -  £2 = P (and Leonardo quotes 
it on these occasions). Proposition 5 has a similar rela­
tion to rectangular problems A = a, + £2 = P and to 
as — Q = P (again noticed by Leonardo). Proposition 7, 
beyond the use made of it by Savasorda, explains the rule 
which seemed to be presupposed already in an Old Akka­
dian school text (see above, p. ???). Proposition 8 does 
not seem to enter any problem directly which we have dis­
cussed so far; but it may be connected to the configuration 
of “four sides and area” (showing that, if we add the four 
sides to a square 0 (5), we do not get a square D{s +  2)— 
instead, we have to add the four sides of the average square 
□ (5  +  1); conversely it can be linked with the concentric 
inscription of one square into another (also familiar from 
Old Babylonian practical geometry). Propositions 9 and 10, 
finally, which like Proposition 8 serve nowhere else in the 
Elements (and which must therefore have been supposed to 
possess a value of their own),^^ solve the problems where 
the sum of two square areas and either the sum or the dif­
ference between their sides are known^^. (Leonardo also 
makes appeal to Proposition 10 a couple of times.)

The proofs of Propositions 9 and 10 are obviously of 
the Greek and not the naive type. The others, however, 
fall into two sections, of which the second is in essence a 
cut-and-paste proof, and the first explains why the various 
constituents of the diagram are really squares, rectangles, 
etc. Section 1, we may say, takes care that the subsequent 
cut-and-paste section is not naive.

Propositions 1 to 3 have a similar function. Propo­
sition 1 is a general “critique of mensurational reason,” 
justifying the cutting and pasting of rectangles; Proposi­
tions 2 and 3 apply this insight to the particular situations 
where sides (provided with a “projection,” it goes by itself) 
are added to or subtracted from a square.

Elements II. 1-10, we may hence conclude, is closely 
connected to the cut-and-paste mensurational algebra and is

precisely, as formulated above, a critique. We may observe, 
furthermore, that the whole group of propositions points 
back to the stock of problems and procedures which seems 
to have been present in Old Babylonian times. There is no 
trace of the new problem types from the Seleucid tablet.

Arguments can be given that the kind of area geome­
try which was canonized in Elements II was developed in 
the fifth century B.C. in connection with a theoretical in­
vestigation inspired by surveyors’ geometry and algebra.^® 
If this is really so, then there is some reason to believe that 
the new problems reached or arose in the Near Eastern and 
Mediterranean world after 500 B.C., but before 200 B.C.. 
We may think either of the contacts resulting from Alexan­
der’s conquests, or of the general establishment of cultural 
interaction along the Silk Road."^^

It may be added that the small group of second-degree 
problems in Diophantos’s Arithmetica I also refer to what 
appears to be the original core of the mensuration algebra: 
a rectangle with given area and given sum of (Proposition 
27) or difference between (Proposition 30) the sides; and 
two squares with given sum of the sides and given sum of 
(Proposition 29) or difference between (Proposition 29) the 
areas.

The next occasion on which the tradition of mensu­
ration algebra turns up in familiar sources is at its en­
counter with the numerical al-jabr practice, and when al- 
Khwmzml draws upon its cut-and-paste technique in order 
to demonstrate the correctness of the al-jabr calculations. 
These geometrical proofs were already discussed above and 
need not be taken up again. Only one observation should 
be added: when teaching the addition and subtraction of 
binomials involving roots, al-Khwmzmi’s standard exem­
plification of the root—that is, we must presume, the first 
square root which his reader is expected to recognize as 
not reducible to a number—is \/200, the diagonal of our 
familiar 10 x 10-square. Unless this concurrence is purely 
accidental (which is not likely—see also note 13 on the pos­
sibility to distinguish chronological strata in the mensura­
tion tradition by means of changing approximations to this 
length), the practice from which al-Khwmzml borrowed 
his proofs thus appears to have been fairly well known.

Mensuration algebra did not disappear as an indepen­
dent tradition after al-Khwmzml’s integration of its meth­
ods with al-jabr As we have seen, at least three or four 
different versions could be found in the Islamic world in the 
twelfth and thirteenth century. But as we have also seen, it 
had lost its raison-d*etre as a separate mathematical tradi­
tion. In this as in other fields, Islamic mathematics initiated 
an integration of theoretical and practitioners’ mathematics 
which was, in the Modem epoch, to transform the latter en­
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terprise into applied [theoretical] mathematics. Gherardo, 
as a faithful translator, would still render Abu Bakr’s sharp 
distinction between (geometrical) standard method and (nu­
merical) al-jabr. Leonardo the mathematician, however, did 
not see the point, or saw no point in doing so.

VI. The End of a Tradition

However much the tradition of mensuration algebra had 
become superfluous from a theoretical point of view, it did 
not die easily in Christian Europe once it had been adopted. 
Thus, in the geometrical part of his Summa de arithmetica, 
Luca Pacioli tells that

even though rather much has been said about the 
rule of algebra in the part on arithmetic: none the 
less, something must be said about it here."̂ ®

What needs to be said turns out to be precisely what 
Leonardo tells in his Pratica geometrie. The treatment is 
so close to Leonardo that misprints in Pacioli’s lettering 
of diagrams can be corrected from Leonardo’s text. (This 
was how I stumbled upon the affinity between the texts.) 
But there are certain puzzling exceptions to his faithful­
ness: thus Leonardo, as we remember, did not speak about 
“the four sides and the area” but about “the area and its 
four sides” making up 140. Pacioli, however, returns to the 
original pattern. Since this pattern was as foreign to Renais­
sance algebra as to Old Babylonian algebra, Pacioli can not 
be expected to have reinvented the ancestral formula on his 
own: it must have been around. As it has sometimes been 
suspected, Italian Late Medieval algebra, however much 
it was indebted to Leonardo, must have received impulses 
from the Islamic world through supplementary channels."^  ̂

The last appearance of the set of problems once be­
longing to the tradition of mensuration algebra is in Pedro 
Nunez Libw de algebra en arithmetica y  geometria from 
1567 (at least the last which I know about—but my read­
ing of Renaissance sources is far from complete). Part III, 
chapter 7 has the heading “About the practice of algebra in 
geometrical cases or examples, and firstly about squares”.^  ̂
It is obvious that Nunez has profited much from Pacioli, 
as also told in his concluding address to the reader (fol. 
323^). In our now customary abbreviations, the examples 
about squares are the following:

1. 5 =  3: Q?
2. Q = a\ s i
3. 5 =  3: dl
4. d =  6: 5?

5. d +  5 =  6 :d? 5?

6. d - s = 10: d? 5?
7. d -  s = 3: d? s?
8. s - { d - s) =  15: s? d?
9. d - { d - s) = 14: 5? d?

10. s Q == 90: s? Q?
11. d + Q == 12: Q? 5?
12. s + d + Q = 37: s? d? Q?
13. Q s  = 10: s? Q?
14. d - Q  = 12: s? Q?

These translations are misleading insofar as they conceal 
the real format of the examples. This format follows that of 
the Euclidean Data (and of Jordanus de Nemore’s De nu- 
meris datis)— for instance. No. 11 tells that “if the diameter 
and the area of the square together are known, then each is 
known separately.” Only afterwards the numerical example 
is introduced. In this respect, the text is thus developing 
toward theory. It has also dropped the opaque solutions by 
unexplained numerical algorithms (the rudiments of naive 
cut-and-paste procedures), and starts directly with the al­
gebraic solution.

But the themes are traditional. Nunez, when advertis­
ing the capabilities of algebra, feels the need to demonstrate 
that this wonderful technique is able to resolve both the tra­
ditional problems and even more complex problems of the 
same kind (like No. 12). He presents only one example 
for each problem type, and thus drops “the four sides.” For 
the last time, however, “the side” appears before the area in 
No. 10, betraying the Bronze Age descent—and for the last 
time (before Vi^te changed the terms in which the problem 
of homogeneity was discussed) it is explained that what is 
added to the area is another area, “a root” being the side 
provided with a “projection 1” (cf. also Nunez’ fol. 6^).

Within a generation, Vifete was to show the capability 
of algebra to elucidate much more complex problems. If 
algebra was still in need of commercials, much more im­
pressive applications than artificial mensuration geometry 
were now at hand. After somewhat more than three thou­
sand years, “the area and the four sides,” as the totality of 
mensuration algebra, could leave the world so quietly that 
nobody noticed its death, and nobody remembered that it 
had ever existed.

VII. Note added in proof

After having finished the preceding paper I stumbled upon 
a Greek version of the problems of the four sides and the 
area. In manuscript S of the pseudo-Heronic Geometrica
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(which is also close to the Near Eastern surveyors’ tradition 
on several other accounts), Chapter 24.3^^ runs as follows: 

A square surface having the area together with 
the perimeter of 896 feel. To get separated the 
area and the perimeter. I do like this: In general 
[i.e., independently of the parameter 896 -  JH], 
place outside {eKTuOri^i) the 4 units, whose half 
becomes 2 feet. Putting this on top of itself be­
comes 4. Putting together just this with the 896 
becomes 900, whose squaring side becomes 30 
feet. I have taken away underneath {v(j)aip£ijj) 
the half, 2 feet are left. The remainder becomes 
28 feet. So the area is 784 feet, and let the perime­
ter be 112 feet. Putting together just all this be­
comes 896 feet. Let the area with the perimeter 
be that much, 896 feet.

FIGURE 9

The text is thus an almost fully explicit description 
of the procedure shown in the diagram (whose principle 
is that of Figure 2, but which is turned around in or­
der to fit the description): whereas the Babylonian text 
“posits” the “projection,” this one “places” the 4 units— 
which are afterwards told to be feet—“̂outside” the square. 
One half is “put on top” of the other in the production 
of the quadratic complement; from the resulting side of 
the completed square, 2 are identified as that part of the 4 
which was left when the half was “taken away underneath,” 
leaving 28 for the side of the original square.

The phrase “in general” tells us that the problem was 
considered a standard problem where the parameter 896— 
but not the number of sides—could be varied.
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7).

32. Propositiones ad acuendos iuvenes, problem 52, ver­
sion II, ed. M. Folkerts, “Die „lteste mathematis- 
che Aufgabensammlung in lateinischer Sprache: Die 
Alkuin zugeschriebenen Propositiones ad acuendos iu- 
venes, " Osterreichische Akademie der Wissenschaften, 
Mathematisch-Naturwissenschaftliche Klasse. Denkschriften 
(Wien, 1978), 116. Band, 6. Abhandlung, here p. 74. Em­
phasis added.

33. This relation between professional mathematical practice 
and recreational mathematics is a focal theme in my “Sub- 
Scientific Mathematics. Observations on a Pre-Modem Phe­
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of parameters. Evidently it is not excluded that surveyors’ 
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tions of our tradition in classical sources (in particular Ele­
ments II, cf. below) and the unquestionable presence of two- 
square problems where Q 1 - Q 2 is given speak in favour of 
the two-square assumption with given sum. A sequence of 
problems about the same two squares in the late Old Baby­
lonian text TMS V (one of which coincides with BM 13901 
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39. Ed. Neugebauer, MKT III, pp. 14-17 (cit. n. 1).

40. £i and 2̂; h  and d\ £ i d  and 2̂; h  +  ^2 and A; i \  +  ^2 
and d ;£ i-\-d  and £2; £ i-\-d  and £2 d\ £ i £2 d and A.

41. This discontinuity can be traced on several levels beyond 
those already mentioned (Sumerian word signs and prob­
lem types): the structure of the terminology; the construction 
of problems from integral solutions and integral coefficients 
(evidence that the problems have been borrowed rather di­
rectly from the mensuration tradition, without much further 
systematization or tinkering); and a tendency to constmct so­
lutions from sum and difference rather than semi-sum and 
semi-difference (as had been the Old Babylonian habit, and 
as Abu Bakr would mostly still do in the old problems).

42. For convenience I translate the propositions into symbols (it 
should be remembered that such a translation is always some­
what arbitrary—cf. the two different translations of prop. 7):

1. □(o,p+gH----- ht) =  □ («.?)+□ («. 9)+-
2. 0 (0) =  0 (0 , p) +  0 (0 , o -  p).

3. □ (0,0 + p ) =  D(a) +D (o,p).

•+D(a,0-
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4. n (a  +  b) =  0 (0 )  +  □(&) +  2 D (o ,b).
5. □ (a ,6 ) +  n ( ^ ) = n ( £ ± ^ ) .
6. n(a, a + p) + n ( f ) = n(a + f ).
7. n (a  +  p) +  □(a) =  2D (a  +  p, a) +  □(/?); or, alterna­

tively, □(a) + □(&) =  2C\{ayb) +  C\{a -  b).
8. 4 n ( a , p )  +  B { a - p )  =  n ( a  +  p).

9. DCa) +  □(&) =  2 [d ( ^ )  +  □ ( ^ )

10. □ (a) +  D(a +  p) =  2 h ( f )  +  D (a +  f )

We observe that proposition 6 coincides with proposi­
tion 5 if only b =  a-\-p. proposition 5 corresponds, however, 
to the situation where the sum of the two sides is known (as 
in proposition 9, a and b result from the splitting of a line in 
unequal segments), and where they are thus drawn in contin­
uation of each other in the proof; proposition 6, on its part, 
is adapted to the situation where one exceeds the other by p, 
and the proof thus draws them in superposition. Precisely the 
same relation holds between proposition 9 and proposition
10, while proposition 4 and proposition 7 are similarly but 
not identically correlated.
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Savasorda’s and Leonardo’s use of propositions from Ele­
ments does not mean that they were employed within the tra­
dition of mensuration algebra in the form we (and Leonardo 
and Savasorda) know them, only that they were still close 
enough to this tradition to be serviceable.

44. Strictly speaking, proposition 9 is cited, but in what seems 
to be an interpolated lemma. As pointed out by Ian Mueller, 
propositibns 8 and 10 might have been cited in the same 
way, as justifications of unproved assumptions—Philosophy 
o f Mathematics and Deductive Structure in Euclid *s Ele­
ments, p. 301 (Cambridge, Mass., & London: MIT Press, 
1981). It seems as if the kind of knowledge contained in the 
three propositions was too familiar to require explicit citation 
once it had been proved.

45. They also solve problems about rectangles where the diago­
nal and either the sum of or the difference between the sides 
are known. As argued above (see note 38), at least one of 
these groups (most likely the two-square problems) will have 
belonged to the early phase of the mensuration algebra.

46. See my “D5Tiamis” (cit. n. 5), where further references to 
work by earlier authors (not least Wilbur Knorr) on this 
question are given.

47. Since the second-degree problems which turn up in the first 
century (CE) Chinese Nine Chapters on Arithmetic {Chiu 
chang suan shu. Neun BUcher arithmetischer Technik, ed. 
trans. Kurt Vogel, pp. 91 f  (Braunschweig: Friedrich Vieweg 
& Sohn, 1968)) are related to the “new” Seleucid problems 
(and the dress of one of them, the leaning reed, an obvious 
borrowing), conquest can hardly be the only factor involved.

48. Part II, fol. 15̂  (cit. n. 4).
49. Another suggestive deviation from Leonardo is Pacioli’s ver­

sion of Abu Bakr’s No. 38 (above, p. ???): It is more correct 
than the Gherardo translation, which had been repeated so 
faithfully by Leonardo. Pacioli, indeed, finds the complet­
ing square 4 as “half the number of sides squared” (fol. 
19*̂ ). Since the Gherardo/Leonardo text is meaningless as it 
stands, it is highly unlikely that Pacioli could have used this 
version and just improved it. If he had done so (for example, 
supported by an al-jabr analysis), he could have produced 
a fully correct solution: instead, his explanation still presup­
poses tacitly that the excess and half the number of sides 
coincide.

We may infer that Pacioli*s source for the pattern “sides 
and area” is thus not likely to have been the Gherardo version 
of the Liber mensurationum.

50. P. Nunez, Libro de Algebra en Arithmetica y  Geometria, fol 
277''ff (Anvers: En casa de los herederos d’Amaldo Birck- 
man, 1567).

51. Ed. J. L. Heiberg [1912: 418] Heronis Definitiones cum 
variis collectionibus. Heronis quae feruntur Geometrica, p. 
412 (Heronis Alexandrini Opera quae supersunt omnia, IV. 
Leipzig: Teubner, 1912).
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